6 research outputs found

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    LPS Down-Regulates Specificity Protein 1 Activity by Activating NF-κB Pathway in Endotoxemic Mice

    Get PDF
    <div><p>Background</p><p>Specificity protein (Sp) 1 mediates the transcription of a large number of constitutive genes encoding physiological mediators. NF-κB mediates the expression of hundreds of inducible genes encoding pathological mediators. Crosstalk between Sp1 and NF-κB pathways could be pathophysiologically significant, but has not been studied. This study examined the crosstalk between the two pathways and defined the role of NF-κB signaling in LPS-induced down-regulation of Sp1 activity.</p><p>Methods and Main Findings</p><p>Challenge of wild type mice with <i>samonelia enteritidis</i> LPS (10 mg/kg, i.p.) down-regulated Sp1 binding activity in lungs in a time-dependent manner, which was concomitantly associated with an increased NF-κB activity. LPS down-regulates Sp1 activity by inducing an LPS inducible Sp1-degrading enzyme (LISPDE) activity, which selectively degrades Sp1 protein, resulting in Sp1 down-regulation. Blockade of NF-κB activation in mice deficient in NF-κB p50 gene (NF-κB-KO) suppressed LISPDE activity, prevented Sp1 protein degradation, and reversed the down-regulation of Sp1 DNA binding activity and eNOS expression (an indicator of Sp1 transactivation activity). Inhibition of LISPDE activity using a selective LISPDE inhibitor mimicked the effects of NF-κB blockade. Pretreatment of LPS-challenged WT mice with a selective LISPDE inhibitor increased nuclear Sp1 protein content, restored Sp1 DNA binding activity and reversed eNOS protein down-regulation in lungs. Enhancing tissue level of Sp1 activity by inhibiting NF-κB-mediated Sp1 down-regulation increased tissue level of IL-10 and decreased tissue level of TNF- αin the lungs.</p><p>Conclusions</p><p>NF-κB signaling mediates LPS-induced down-regulation of Sp1 activity. Activation of NF-κB pathway suppresses Sp1 activity and Sp1-mediated anti-inflammatory signals. Conversely, Sp1 signaling counter-regulates NF-κB-mediated inflammatory response. Crosstalk between NF-κB and Sp1 pathways regulates the balance between pro- and anti-inflammatory cytokines.</p></div
    corecore