46 research outputs found

    Understanding Emerging Zoonotic Respiratory Viruses

    Get PDF
    The objective of the work presented in this thesis was to improve understanding of, and response to, emerging zoonotic respiratory viruses. To this end, various animal models were employed to represent respiratory viral infections in humans. The introduction serves to provide a background on the currently available animal models and (potential) vaccine strategies for human influenza and coronavirus infections. For the work presented in this thesis, animal models were used in three distinct ways, underlining that the choice of animal model depends largely on the research question. In Chapter 2-4 a new isogenic guinea pig model was developed that provides unique features compared to established influenza virus models. The baseline parameters of influenza infection in this model were assessed to determine its suitability for use to simultaneously study transmission and cell mediated immunity to influenza infections. In Chapter 5, an established model was used to test a novel intervention strategy for an emerging influenza subtype. We showed that the modified vaccinia ankara (MVA)- H7 vaccine is effective against the newly emerging influenza A/H7N9 virus in the ferret model and that it satisfies one of the main aims of the novel influenza vaccines: rapid availability. Finally in Chapter 6, a new model was explored to gain understanding of the pathogenesis of a recently emerged coronavirus. Cynomolgous macaques were used to study underlying mechanisms that appear to restrict MERS-CoV replication in some hosts and data was compared to two other coronaviruses SARS-CoV and NL63-CoV. In the summarizing discussion (Chapter 7), further attention is paid to the parallels and differences between coronaviruses and influenza viruses, what questions remain to be answered and how we may hope to answer them

    Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head

    Get PDF
    Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines

    Beyond Parasitism: Hepatic Lesions in Stranded Harbor Porpoises (Phocoena phocoena) Without Trematode (Campula oblonga) Infections

    Get PDF
    The liver can be an indicator of the health of an individual or of a group, which can be especially important to identify agents that can cause disease in multiple species. To better characterize hepatic lesions in stranded harbor porpoises (Phocoena phocoena), we analyzed the livers from 39 porpoises that stranded along the Dutch coast between December 2008 and December 2012. The animals were selected because they had either gross or histologic liver lesions with minimal autolysis and no evidence of trematode (Campula oblonga) infection. The most common finding was a chronic hepatitis (22/39, 56.4%) that was often associated with significant disease reported in another organ system (18/22, 81.8%), of which 14 had chronic systemic disease. One case of chronic hepatitis was so severe as to mimic lymphoma, which could only be differentiated with immunohistochemistry. The other common lesions were lipidosis (11/39, 28.2%) and acute hepatitis (6/39, 15.4%), often in combination with mild chronic changes. Overall, although there were no consistent trends in etiology for the hepatic lesions, lipidosis was associated with starvation (8/11, 72.7%) and acute disease, and acute hepatitis was associated with bacterial infections and sepsis (6/6, 100%)

    Morphology and size of stem cells from mouse and whale: Observational study

    Get PDF
    Abstract Objective To compare the morphology and size of stem cells from two mammals of noticeably different body size. Design Observational study. Setting The Netherlands. Participants A humpback whale (Megaptera novaeangliae) and a laboratory mouse (Mus musculus). Main outcome measures Morphology and size of mesenchymal stem cells from adipose tissue. Results Morphologically, mesenchymal stem cells of the mouse and whale are indistinguishable. The average diameter of 50 mesenchymal stem cells from the mouse was 28 (SD 0.86) ÎĽm and 50 from the whale was 29 (SD 0.71) ÎĽm. The difference in cell size between the species was not statistically significant. Although the difference in bodyweight between the species is close to two million-fold, the mesenchymal stem cells of each were of similar size. Conclusions The mesenchymal stem cells of whales and mice are alike, in both morphology and size

    Pathological findings in stranded harbor porpoises (Phocoena phocoena) with special focus on anthropogenic causes

    Get PDF
    Humans impact natural systems at an unprecedented rate. The North Sea is one of the regions in the world with the highest levels of anthropogenic activity. Here, the harbor porpoise (Phocoena phocoena) is an abundant species and is often regarded as an ecosystem sentinel. A post-mortem surveillance program was established in the Netherlands aimed at increasing knowledge of the effects of human activities on harbor porpoises. In this study, we describe the pathological findings related to anthropogenic and natural causes of death categories in 612 harbor porpoises that stranded between 2008 and 2019, and assess their relations to age, sex, season, and location. The largest anthropogenic category was bycatch (17%), with mainly juveniles affected and peak periods in March and September–October. Other, infrequently diagnosed anthropogenic causes of death were trauma (4%), largely most likely due to ship collisions, and marine debris ingestion and entanglement (0.3%). The risk of dying from anthropogenic causes was highest for juveniles. Lesions compatible with noise-induced hearing loss were investigated in carcasses which were fresh enough to do so (n = 50), with lesions apparent in two porpoises. Non-direct human-induced threats included infectious diseases, which were by far the largest cause of death category (32%), and affected mainly adults. Also, gray seal (Halichoerus grypus) attacks were a frequently assigned cause of death category (24%). There were more acute predation cases in the earlier study years, while porpoises with lesions that suggested escape from gray seal attacks were diagnosed more recently, which could suggest that porpoises adapted to this threat. Our study contributes to understanding porpoise health in response to persisting, new, emerging, and cumulative threats. Building up such knowledge is crucial for conservation management of this protected species

    Pathological findings in stranded harbor porpoises (Phocoena phocoena) with special focus on anthropogenic causes

    Full text link
    peer reviewedHumans impact natural systems at an unprecedented rate. The North Sea is one of the regions in the world with the highest levels of anthropogenic activity. Here, the harbor porpoise (Phocoena phocoena) is an abundant species and is often regarded as an ecosystem sentinel. A post-mortem surveillance program was established in the Netherlands aimed at increasing knowledge of the effects of human activities on harbor porpoises. In this study, we describe the pathological findings related to anthropogenic and natural causes of death categories in 612 harbor porpoises that stranded between 2008 and 2019, and assess their relations to age, sex, season, and location. The largest anthropogenic category was bycatch (17%), with mainly juveniles affected and peak periods in March and September–October. Other, infrequently diagnosed anthropogenic causes of death were trauma (4%), largely most likely due to ship collisions, and marine debris ingestion and entanglement (0.3%). The risk of dying from anthropogenic causes was highest for juveniles. Lesions compatible with noise-induced hearing loss were investigated in carcasses which were fresh enough to do so (n = 50), with lesions apparent in two porpoises. Non-direct human-induced threats included infectious diseases, which were by far the largest cause of death category (32%), and affected mainly adults. Also, gray seal (Halichoerus grypus) attacks were a frequently assigned cause of death category (24%). There were more acute predation cases in the earlier study years, while porpoises with lesions that suggested escape from gray seal attacks were diagnosed more recently, which could suggest that porpoises adapted to this threat. Our study contributes to understanding porpoise health in response to persisting, new, emerging, and cumulative threats. Building up such knowledge is crucial for conservation management of this protected species

    Novel B19-like parvovirus in the brain of a harbor seal

    Get PDF
    Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus , to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the

    Novel polyomaviruses in mammals from multiple orders and reassessment of polyomavirus evolution and taxonomy

    Get PDF
    As the phylogenetic organization of mammalian polyomaviruses is complex and currently incompletely resolved, we aimed at a deeper insight into their evolution by identifying polyomaviruses in host orders and families that have either rarely or not been studied. Sixteen unknown and two known polyomaviruses were identified in animals that belong to 5 orders, 16 genera, and 16 species. From 11 novel polyomaviruses, full genomes could be determined. Splice sites were predicted for large and small T antigen (LTAg, STAg) coding sequences (CDS) and examined experimentally in transfected cell culture. In addition, splice sites of seven published polyomaviruses were analyzed. Based on these data, LTAg and STAg annotations were corrected for 10/86 and 74/86 published polyomaviruses, respectively. For 25 polyomaviruses, a spliced middle T CDS was observed or predicted. Splice sites that likely indicate expression of additional, alternative T antigens, were experimentally detected for six polyomaviruses. In contrast to all other mammalian polyomaviruses, three closely related cetartiodactyl polyomaviruses display two introns within their LTAg CDS. In addition, the VP2 of Glis glis (edible dormouse) polyomavirus 1 was observed to be encoded by a spliced transcript, a unique experimental finding within the Polyomaviridae family. Co-phylogenetic analyses based on LTAg CDS revealed a measurable signal of codivergence when considering all mammalian polyomaviruses, most likely driven by relatively recent codivergence events. Lineage duplication was the only other process whose influence on polyomavirus evolution was unambiguous. Finally, our analyses suggest that an update of the taxonomy of the family is required, including the creation of novel genera of mammalian and non-mammalian polyomaviruses.info:eu-repo/semantics/publishedVersio
    corecore