189 research outputs found
Random Cluster Models on the Triangular Lattice
We study percolation and the random cluster model on the triangular lattice
with 3-body interactions. Starting with percolation, we generalize the
star--triangle transformation: We introduce a new parameter (the 3-body term)
and identify configurations on the triangles solely by their connectivity. In
this new setup, necessary and sufficient conditions are found for positive
correlations and this is used to establish regions of percolation and
non-percolation. Next we apply this set of ideas to the random cluster
model: We derive duality relations for the suitable random cluster measures,
prove necessary and sufficient conditions for them to have positive
correlations, and finally prove some rigorous theorems concerning phase
transitions.Comment: 24 pages, 1 figur
Recommended from our members
An Overview of the Reliability and Availability Data System (RADS)
The Reliability and Availability Data System (RADS) is a database and analysis code, developed by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Nuclear Regulatory Commission (USNRC). The code is designed to estimate industry and plant-specific reliability and availability parameters for selected components in risk-important systems and initiating events for use in risk-informed applications. The RADS tool contains data and information based on actual operating experience from U.S. commercial nuclear power plants. The data contained in RADS is kept up-to-date by loading the most current quarter's Equipment Performance and Information Exchange (EPIX) data and by yearly lods of initiating event data from licensee event reports (LERS). The reliability parameters estimated by RADS are (1) probability of failure on demand, (2) failure rate during operation (used to calculate failure to run probability) and (3) time trends in reliability parameters
Fracturing ranked surfaces
Discretized landscapes can be mapped onto ranked surfaces, where every
element (site or bond) has a unique rank associated with its corresponding
relative height. By sequentially allocating these elements according to their
ranks and systematically preventing the occupation of bridges, namely elements
that, if occupied, would provide global connectivity, we disclose that bridges
hide a new tricritical point at an occupation fraction , where
is the percolation threshold of random percolation. For any value of in the
interval , our results show that the set of bridges has a
fractal dimension in two dimensions. In the limit , a self-similar fracture is revealed as a singly connected line
that divides the system in two domains. We then unveil how several seemingly
unrelated physical models tumble into the same universality class and also
present results for higher dimensions
Liganded Androgen Receptor Interaction with β-Catenin: NUCLEAR CO-LOCALIZATION AND MODULATION OF TRANSCRIPTIONAL ACTIVITY IN NEURONAL CELLS
A yeast two-hybrid assay was employed to identify androgen receptor (AR) protein partners in gonadotropin-releasing hormone neuronal cells. By using an AR deletion construct (AR-(Delta371-485)) as a bait, beta-catenin was identified as an AR-interacting protein from a gonadotropin-releasing hormone neuronal cell library. Immunolocalization of co-transfected AR and FLAG-beta-catenin demonstrated that FLAG-beta-catenin was predominantly cytoplasmic in the absence of androgen. In the presence of 5alpha-dihydrotestosterone, FLAG-beta-catenin completely co-localized to the nucleus with AR. This effect was specific to AR because liganded progesterone, glucocorticoid, or estrogen alpha receptors did not translocate FLAG-beta-catenin to the nucleus. Agonist-bound AR was required because the AR antagonists casodex and hydroxyflutamide failed to translocate beta-catenin. Time course experiments demonstrated that co-translocation occurred with similar kinetics. Nuclear co-localization was independent of the glycogen synthase kinase-3beta, p42/44 ERK mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways because inhibitors of these pathways had no effect. Transcription assays demonstrated that liganded AR repressed beta-catenin/T cell factor-responsive reporter gene activity. Conversely, co-expression of beta-catenin/T cell factor repressed AR stimulation of AR-responsive reporter gene activity. Our data suggest that liganded AR shuttles beta-catenin to the nucleus and that nuclear interaction of AR with beta-catenin may modulate transcriptional activity in androgen target tissues
Global Consensus Position Statement on the Use of Testosterone Therapy for Women
The only evidence-based indication for testosterone for women is for HSDD. There are insufficient data for using testosterone for any other symptom/condition or for disease prevention
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
- …