8 research outputs found

    HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia

    Get PDF
    Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML

    STAT5-induced self-renewal and impaired myelopoiesis of human hematopoietic stem/progenitor cells involves down-modulation of C/EBP alpha

    Get PDF
    Previously, we demonstrated that enforced activation of signal transducer and activator of transcription 5 (STAT5A) in human cord blood (CB)-derived stem/progenitor cells results in enhanced self-renewal and impaired myelopoiesis. The present study identifies C/EBP alpha as a critical component that is down-regulated by STAT5. Microarray and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis on STAT5A(1.6)-transduced CD34(+) cells identified C/EBP alpha as the most prominently down-regulated gene. To determine the cell-biological relevance of these observations, a 4-OHT-inducible C/EBP alpha-ER protein was co-expressed with the STAT5A(1*6) mutant in CB COW cells using a retroviral approach. Re-expression of C/EBP alpha in STAT5A(1*6) cells resulted in a marked restoration of myelopoiesis. The proliferative advantage imposed on CD34(+) cells by STAT5A(1*6) depended on the down-modulation of C/EBP alpha, as reintroduction of C/EBPa induced a quick cell-cycle arrest and the onset of myeloid differentiation. Longterm culture-initiating cell (LTC-IC) frequencies were elevated from 0.8% +/- 0.6% to 7.8% +/- 1.9% by STAT5A(1*6) as compared with controls, but these elevated LTC-IC frequencies were strongly reduced upon re-introduction of C/EBP alpha in STAT5A(1*6) cells, and no second cobblestone area-forming cells (CAFCs) could be generated from double-transduced cells. Enumeration of progenitors revealed that the number of colony-forming cells (CFCs) was reduced more than 20-fold when C/EBP alpha was co-expressed in STAT5A(1*6) cells. Our data indicate that down-modulation of C/EBP alpha is a prerequisite for STAT5-induced effects on self-renewal and myelopoiesis

    TGFβ/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability

    No full text
    Homeobox (Hox) gene mutations and their altered expressions are frequently linked to human leukemia. Here, we report that transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) inhibits the bone marrow transformation capability of Hoxa9 and Nup98-Hoxa9, the chimeric fusion form of Hoxa9 identified in human acute myeloid leukemia (AML), through Smad4, the common Smad (Co-Smad) in the TGFβ/BMP signaling pathway. Smad4 interacts directly with the homeodomain of Hoxa9 and blocks the ability of Nup98-Hoxa9 to bind DNA, thereby suppressing its ability to regulate downstream gene transcription. Mapping data revealed that the amino-terminus of Smad4 mediates this interaction and overexpression of the Hoxa9 interaction domain of Smad4 was sufficient to inhibit the enhanced serial replating ability of primary bone marrow cells induced by Nup98-Hoxa9. These studies establish a novel mechanism by which TGFβ/BMP regulates hematopoiesis and suggest that modification of Hox DNA-binding activity may serve as a novel therapeutic intervention for those leukemias that involve deregulation of Hox

    Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastoma aggression

    No full text
    Increased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM. Gain- and loss-of-function xenograft manipulations demonstrated that a mutant IDH1 restricts glioma aggression by reducing HIF1α-dependent TNC expression to decrease ECM stiffness and mechanosignalling. Recurrent IDH1-mutant patient gliomas had a stiffer TNC-enriched ECM that our studies attributed to reduced miR-203 suppression of HIF1α and TNC mediated via a tension-dependent positive feedback loop. Thus, our work suggests that elevated ECM stiffness can independently foster glioblastoma aggression and contribute to glioblastoma recurrence via bypassing the protective activity of IDH1 mutational status
    corecore