113 research outputs found
Recommended from our members
Development of terahertz quantum-cascade lasers as sources for heterodyne receivers
Die vorliegende Arbeit beschĂ€ftigt sich mit der Entwicklung und Optimierung von Terahertz-Quantenkaskadenlasern (THz-QCLs) fĂŒr die Anwendung als Lokaloszillator in THz-Heterodyndetektoren, insbesondere fĂŒr die Detektion der astronomisch wichtigen Sauerstoff (OI) Linie bei 4.75 THz. HierfĂŒr wurden zunĂ€chst unterschiedliche QCL-Heterostrukturen untersucht. Basierend auf einer Heterostruktur, welche schnelle IntersubbandĂŒbergĂ€nge ĂŒber Streuung an Phononen ausnutzt, konnten QCLs mit hoher Ausgangsleistung und niedriger Betriebsspannung bei 3 THz erzielt werden. WĂ€hrend diese Laser auf dem Materialsystem GaAs/Al_xGa_(1-x)As mit basieren, fĂŒhrt die Erhöhung des Al-Anteils auf x=0.25 fĂŒr Ă€hnliche Strukturen zu sehr niedrigen Schwellstromdichten. Durch schrittweise Optimierungen gelang es, QCLs zu realisieren, die bei 4.75 THz emittieren. Mit Hilfe von lateralen Gittern erster Ordnung fĂŒr die verteilte RĂŒckkopplung (DFB) konnten Einzelmoden-Dauerstrichbetrieb mit hoher Ausgangsleistung, sowie Einzelmoden-Betrieb innerhalb des spezifizierten Frequenzbereichs bei 4.75 THz erzielt werden. Eine allgemeine Methode zur Bestimmung der DFB-Kopplungskonstanten erlaubt eine gute Beschreibung der Laser innerhalb der etablierten Theorie der gekoppelten Moden fĂŒr DFB-Laser mit reflektiven Endfacetten. Oft steht das Auftreten negativer differentieller LeitfĂ€higkeit bei höheren FeldstĂ€rken und die damit verbundenen Bildung von elektrischer FelddomĂ€nen (EFDs) im Konflikt mit einem stabilen Betrieb der THz-QCLs. Es wird gezeigt, dass stationĂ€re EFDs mit DiskontinuitĂ€ten in der statischen Licht-Strom-Spannungskennlinie verbunden sind, wĂ€hrend Selbstoszillationen, verursacht durch nicht-stationĂ€re EFDs, eine zeitliche Modulation der Ausgangsleistung bewirken. Mit Hilfe einer effektiven Driftgeschwindigkeit fĂŒr QCLs lassen sich viele der beobachteten PhĂ€nomene durch die nichtlinearen Transportgleichungen fĂŒr schwach gekoppelte Ăbergitter beschreiben.This thesis presents the development and optimization of terahertz quantum-cascade lasers (THz QCLs) as sources for heterodyne receivers. A particular focus is on single-mode emitters for the heterodyne detection of the important astronomic oxygen (OI) line at 4.75 THz. Various active-region designs are investigated. High-output-power THz QCLs with low operating voltages and emission around 3 THz are obtained for an active region, which involves phonon-assisted intersubband transitions. While these QCLs are based on a GaAs/Al_xGa_(1-x)As heterostructure with x=0.15, similar heterostructures with x=0.25 allowed for very low threshold current densities. By successive modifications of the active-region design, THz QCLs have been optimized toward the desired frequency at 4.75 THz. To obtain single-mode operation, first-order lateral distributed-feedback (DFB) gratings are investigated. It shows that such gratings allow for single-mode operation in combination with high continuous-wave (cw) output powers. A general method is presented to calculate the coupling coefficients of lateral gratings. In conjunction with this method, the lasers are well described by the coupled-mode theory of DFB lasers with two reflective end facets. Single-mode operation within the specified frequency bands at 4.75 THz is demonstrated. Stable operation of THz QCLs is often in conflict with the occurrence of a negative differential resistance (NDR) regime at elevated field strengths and the formation of electric-field domains (EFDs). Stationary EFDs are shown to be related to discontinuities in the cw light-current-voltage characteristics, while non-stationary EFDs are related to current self-oscillations and cause a temporal modulation of the output power. To model such effects, the nonlinear transport equations of weakly coupled superlattices are adopted for QCLs by introducing an effective drift velocity-field relation
High-spectral-resolution terahertz imaging with a quantum-cascade laser
We report on a high-spectral-resolution terahertz imaging system
operating with a multi-mode quantum-cascade laser (QCL), a fast scanning
mirror, and a sensitive Ge:Ga detector. By tuning the frequency of the QCL,
several spectra can be recorded in 1.5 s during the scan through a gas cell
filled with methanol (CH3OH). These experiments yield information about
the local absorption and the linewidth. Measurements with a faster frame
rate of up to 3 Hz allow for the dynamic observation of CH3OH gas leaking
from a terahertz-transparent tube into the evacuated cell. In addition to the
relative absorption, the local pressure is mapped by exploiting the effect of
pressure broadening
A 3.5-THz, x6-Harmonic, Single-Ended Schottky Diode Mixer for Frequency Stabilization of Quantum-Cascade Lasers
Efficient and compact frequency converters are essential for frequency
stabilization of terahertz sources. In this paper, we present a 3.5-THz,
x6-harmonic, integrated Schottky diode mixer operating at room temperature. The
designed frequency converter is based on a single-ended, planar Schottky diode
with a sub-micron anode contact area defined on a suspended 2-m ultra-thin
GaAs substrate. The dc-grounded anode pad was combined with the radio frequency
E-plane probe, which resulted in an electrically compact circuit. At 200 MHz
intermediate frequency, a mixer conversion loss of about 59 dB is measured and
resulting in a 40 dB signal-to-noise ratio for phase locking 3.5-THz
quantum-cascade laser. Using a quasi-static diode model combined with
electromagnetic simulations, good agreement with the measured results was
obtained. Harmonic frequency converters without the need of cryogenic cooling
will help in the realization of highly sensitive space and air-borne heterodyne
receivers.Comment: Submitted to IEEE-TS
Frequency tuning of terahertz quantum-cascade lasers by spatially controlled optical excitation
We demonstrate the feasibility of wideband frequency tuning of terahertz quantum-cascade lasers by spatially well-controlled near-infrared optical excitation. We observe a single-mode continuous-wave frequency coverage of up to 40 GHz for a 3.1 THz laser. This represents a tenfold improvement of the tuning range for the same device as compared to tuning by current. This method is applicable to a wide variety of existing terahertz quantum-cascade lasers
A small satellite with a dual-frequency heterodyne spectrometer for the detection of atomic oxygen in the atmosphere of Earth
A first step towards realization, a small satellite study for OSAS (Oxygen Spectrometer for Atmospheric Science) has been performed based on Concurrent Engineering methods
Recommended from our members
Development of terahertz quantum-cascade lasers as sources for heterodyne receivers
This thesis presents the development and optimization of terahertz quantum-cascade lasers (THz QCLs) as sources for heterodyne receivers. A particular focus is on single-mode emitters for the heterodyne detection of the important astronomic oxygen (OI) line at 4.75 THz. Various active-region designs are investigated. High-output-power THz QCLs with low operating voltages and emission around 3 THz are obtained for an active region, which involves phonon-assisted intersubband transitions. While these QCLs are based on a GaAs/Al_xGa_(1-x)As heterostructure with x=0.15, similar heterostructures with x=0.25 allowed for very low threshold current densities. By successive modifications of the active-region design, THz QCLs have been optimized toward the desired frequency at 4.75 THz. To obtain single-mode operation, first-order lateral distributed-feedback (DFB) gratings are investigated. It shows that such gratings allow for single-mode operation in combination with high continuous-wave (cw) output powers. A general method is presented to calculate the coupling coefficients of lateral gratings. In conjunction with this method, the lasers are well described by the coupled-mode theory of DFB lasers with two reflective end facets. Single-mode operation within the specified frequency bands at 4.75 THz is demonstrated. Stable operation of THz QCLs is often in conflict with the occurrence of a negative differential resistance (NDR) regime at elevated field strengths and the formation of electric-field domains (EFDs). Stationary EFDs are shown to be related to discontinuities in the cw light-current-voltage characteristics, while non-stationary EFDs are related to current self-oscillations and cause a temporal modulation of the output power. To model such effects, the nonlinear transport equations of weakly coupled superlattices are adopted for QCLs by introducing an effective drift velocity-field relation.
Zugriffsstatistik:Die vorliegende Arbeit beschĂ€ftigt sich mit der Entwicklung und Optimierung von Terahertz-Quantenkaskadenlasern (THz-QCLs) fĂŒr die Anwendung als Lokaloszillator in THz-Heterodyndetektoren, insbesondere fĂŒr die Detektion der astronomisch wichtigen Sauerstoff (OI) Linie bei 4.75 THz. HierfĂŒr wurden zunĂ€chst unterschiedliche QCL-Heterostrukturen untersucht. Basierend auf einer Heterostruktur, welche schnelle IntersubbandĂŒbergĂ€nge ĂŒber Streuung an Phononen ausnutzt, konnten QCLs mit hoher Ausgangsleistung und niedriger Betriebsspannung bei 3 THz erzielt werden. WĂ€hrend diese Laser auf dem Materialsystem GaAs/Al_xGa_(1-x)As mit basieren, fĂŒhrt die Erhöhung des Al-Anteils auf x=0.25 fĂŒr Ă€hnliche Strukturen zu sehr niedrigen Schwellstromdichten. Durch schrittweise Optimierungen gelang es, QCLs zu realisieren, die bei 4.75 THz emittieren. Mit Hilfe von lateralen Gittern erster Ordnung fĂŒr die verteilte RĂŒckkopplung (DFB) konnten Einzelmoden-Dauerstrichbetrieb mit hoher Ausgangsleistung, sowie Einzelmoden-Betrieb innerhalb des spezifizierten Frequenzbereichs bei 4.75 THz erzielt werden. Eine allgemeine Methode zur Bestimmung der DFB-Kopplungskonstanten erlaubt eine gute Beschreibung der Laser innerhalb der etablierten Theorie der gekoppelten Moden fĂŒr DFB-Laser mit reflektiven Endfacetten. Oft steht das Auftreten negativer differentieller LeitfĂ€higkeit bei höheren FeldstĂ€rken und die damit verbundenen Bildung von elektrischer FelddomĂ€nen (EFDs) im Konflikt mit einem stabilen Betrieb der THz-QCLs. Es wird gezeigt, dass stationĂ€re EFDs mit DiskontinuitĂ€ten in der statischen Licht-Strom-Spannungskennlinie verbunden sind, wĂ€hrend Selbstoszillationen, verursacht durch nicht-stationĂ€re EFDs, eine zeitliche Modulation der Ausgangsleistung bewirken. Mit Hilfe einer effektiven Driftgeschwindigkeit fĂŒr QCLs lassen sich viele der beobachteten PhĂ€nomene durch die nichtlinearen Transportgleichungen fĂŒr schwach gekoppelte Ăbergitter beschreiben
Laser emission at 4.5 THz from 15NH3 and a mid-infrared quantum-cascade laser as a pump source
We present an optically pumped terahertz gas laser, which is based on a mid-infrared quantum-cascade laser as a pump source, a transversely pumped standing wave resonator, and 15NH3 as a gain medium. We observe several laser lines around 4.5âTHz, corresponding to rotational transitions in the Îœ2 band of ammonia. So far, these are the highest frequencies obtained from a QCL-pumped THz gas laser. The involved molecular transitions are unambiguously identified by high-resolution spectroscopy
High-Frequency Modulation Spectroscopy with a THz Quantum-Cascade Laser
A terahertz absorption spectrometer with a
quantum-cascade laser (QCL) for high-resolution molecular spectroscopy is realized. The spectrometer is based on highfrequency (up to 50 MHz) modulation of the QCL frequency. This allows for the determination of the absorption coefficient and dispersion of the absorbing medium along with a very precise measurement of the line shape of the absorption feature. The design and performance of the spectrometer are presented, and its sensitivity and frequency calibration are discussed
- âŠ