3,516 research outputs found

    Cashing in on spinners: Revenue estimates of wild Dolphin-Swim tourism in the Hawaiian Islands

    Get PDF
    Wild dolphin-swim tourism has grown in specific locations where Hawaiian spinner dolphins (Stenella longirostris) have known resting habitat. The increased growth in dolphin-swim businesses has created an industry in Hawaii that earns an estimated 102million(USD)annuallyin2013.Semistructuredinterviewswithbusinessowners,marketresearch,andboatbasedobservationsprovideaplatformforestimatingrevenuegeneratedfromdolphintourismintwopopularlocations,Waianae,OahuandKailuaKona,HawaiiIsland.Arevenueanalysisofdolphinswimtourismispresentedusingapeakseasonandutilizationratemodel.Thesepredictionsofferanaccountabilityexercisebasedonaseriesofassumptionsregardingwilddolphinswimdemandandanannualestimateofthenumberofviewingparticipantsandrevenueearned.Theresultsshowthatdolphinviewingcompaniesaremakingalargerprofitthandolphinswimbusinessesbyapproximately102 million (USD) annually in 2013. Semi-structured interviews with business owners, market research, and boat-based observations provide a platform for estimating revenue generated from dolphin tourism in two popular locations, Waianae, Oahu and Kailua-Kona, Hawaii Island. A revenue analysis of dolphin-swim tourism is presented using a peak season and utilization rate model. These predictions offer an accountability exercise based on a series of assumptions regarding wild dolphin-swim demand and an annual estimate of the number of viewing participants and revenue earned. The results show that dolphin viewing companies are making a larger profit than dolphin-swim businesses by approximately 19 million (USD) per year, however, both avenues are generating large earnings. Sizable differences between businesses in Kona and Waianae are discussed. The average lifetime revenue generated by a dolphin in 2013 is estimated at 3,364,316(USD)forWaianaeand3,364,316 (USD) for Waianae and 1,608,882 (USD) for Kona, and is presented as a first step in scenario analysis for policy makers looking to implement management in the bays where tourism occurs. This study offers the first revenue estimates of spinner dolphin tourism in Hawaii, which can provide context for further discussion on the impact and economic role of the dolphin-swim industry in the state

    "Which-path information" and partial polarization in single-photon interference experiments

    Full text link
    It is shown that the degree of polarization of light, generated by superposition in a single-photon interference experiment, may depend on the indistinguishability of the photon-paths.Comment: 9 page

    Quantum noise and stochastic reduction

    Full text link
    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schrodinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this article, two such models are investigated: one that achieves state reduction in infinite time, and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions--algebraic in character and involving no integration--are obtained for both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system, and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems.Comment: 50 page

    Controlled Synchronization of One Class of Nonlinear Systems under Information Constraints

    Full text link
    Output feedback controlled synchronization problems for a class of nonlinear unstable systems under information constraints imposed by limited capacity of the communication channel are analyzed. A binary time-varying coder-decoder scheme is described and a theoretical analysis for multi-dimensional master-slave systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output feedback control law is proposed based on the Passification Theorem. It is shown that the synchronization error exponentially tends to zero for sufficiantly high transmission rate (channel capacity). The results obtained for synchronization problem can be extended to tracking problems in a straightforward manner, if the reference signal is described by an {external} ({exogenious}) state space model. The results are applied to controlled synchronization of two chaotic Chua systems via a communication channel with limited capacity.Comment: 8 pages, 2 figure

    Maximum Entropy and Bayesian Data Analysis: Entropic Priors

    Full text link
    The problem of assigning probability distributions which objectively reflect the prior information available about experiments is one of the major stumbling blocks in the use of Bayesian methods of data analysis. In this paper the method of Maximum (relative) Entropy (ME) is used to translate the information contained in the known form of the likelihood into a prior distribution for Bayesian inference. The argument is inspired and guided by intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot be repeated the resulting "entropic prior" is formally identical with the Einstein fluctuation formula. For repeatable experiments, however, the expected value of the entropy of the likelihood turns out to be relevant information that must be included in the analysis. The important case of a Gaussian likelihood is treated in detail.Comment: 23 pages, 2 figure

    Thermodynamics of adiabatic feedback control

    Full text link
    We study adaptive control of classical ergodic Hamiltonian systems, where the controlling parameter varies slowly in time and is influenced by system's state (feedback). An effective adiabatic description is obtained for slow variables of the system. A general limit on the feedback induced negative entropy production is uncovered. It relates the quickest negentropy production to fluctuations of the control Hamiltonian. The method deals efficiently with the entropy-information trade off.Comment: 6 pages, 1 figur

    Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction

    Full text link
    For conventional imaging, shaking of the imaging system or the target leads to the degradation of imaging resolution. In this work, the influence of the target's shaking to fourier-transform ghost diffraction (FGD) is investigated. The analytical results, which are backed up by numerical simulation and experiments, demonstrate that the quiver of target has no effect on the resolution of FGD, thus the target's imaging with high spatial resolution can be always achieved by phase-retrieval method from the FGD patterns. This approach can be applied in high-precision imaging systems, to overcome the influence of the system's shaking to imaging resolution.Comment: 4 pages, 4 figure

    Exact expression for the diffusion propagator in a family of time-dependent anharmonic potentials

    Full text link
    We have obtained the exact expression of the diffusion propagator in the time-dependent anharmonic potential V(x,t)=1/2a(t)x2+blnxV(x,t)={1/2}a(t)x^2+b\ln x. The underlying Euclidean metric of the problem allows us to obtain analytical solutions for a whole family of the elastic parameter a(t), exploiting the relation between the path integral representation of the short time propagator and the modified Bessel functions. We have also analyzed the conditions for the appearance of a non-zero flow of particles through the infinite barrier located at the origin (b<0).Comment: RevTex, 19 pgs. Accepted in Physical Review

    Noise-induced dynamics in bistable systems with delay

    Full text link
    Noise-induced dynamics of a prototypical bistable system with delayed feedback is studied theoretically and numerically. For small noise and magnitude of the feedback, the problem is reduced to the analysis of the two-state model with transition rates depending on the earlier state of the system. In this two-state approximation, we found analytical formulae for the autocorrelation function, the power spectrum, and the linear response to a periodic perturbation. They show very good agreement with direct numerical simulations of the original Langevin equation. The power spectrum has a pronounced peak at the frequency corresponding to the inverse delay time, whose amplitude has a maximum at a certain noise level, thus demonstrating coherence resonance. The linear response to the external periodic force also has maxima at the frequencies corresponding to the inverse delay time and its harmonics.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
    corecore