7 research outputs found

    Identification of microRNA biomarkers for response of advanced soft tissue sarcomas to eribulin: Translational results of the EORTC 62052 trial

    No full text
    Recent phase II and III clinical trials demonstrated anti-tumour activity of eribulin, a tubulin-interacting cytotoxic agent, in patients with metastatic soft tissue sarcoma (STS). In this exploratory study, we aimed to identify putative microRNA biomarkers that associate with eribulin sensitivity or resistance in STS.publisher: Elsevier articletitle: Identification of microRNA biomarkers for response of advanced soft tissue sarcomas to eribulin: Translational results of the EORTC 62052 trial journaltitle: European Journal of Cancer articlelink: http://dx.doi.org/10.1016/j.ejca.2016.12.018 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.status: publishe

    Lysosomal Sequestration Determines Intracellular Imatinib Levels

    No full text
    The intracellular uptake and retention (IUR) of imatinib is reported to be controlled by the influx transporter SLC22A1 (OCT1). We recently hypothesized that alternative uptake and/or retention mechanisms exist that determine intracellular imatinib levels. Here we systematically investigate the nature of these mechanisms. Imatinib uptake in cells was quantitatively determined by LC-MS-MS. Fluorescent microscopy was used to establish subcellular localization of imatinib. Immunoblotting, cell cycle analyses and apoptosis assays were done to evaluate functional consequences of imatinib sequestration. Uptake experiments revealed high intracellular imatinib concentrations in HEK293, the leukemic cell lines K562, SD-1, and a gastrointestinal stromal tumor cell line GIST-T1. We demonstrated that imatinib IUR is time, dose, temperature and energy dependent and provide evidence that SLC22A1 and other potential imatinib transporters do not substantially contribute to the IUR of imatinib. Prazosin, amantadine, NH4Cl and the V-ATPase inhibitor bafilomycin A1 significantly decreased the IUR of imatinib and likely interfere with lysosomal retention and accumulation of imatinib. Co-staining experiments with Lysotracker Red confirmed lysosomal sequestration of imatinib. Inhibition of the lysosomal sequestration had no effect on the inhibition of c-Kit signaling and imatinib mediated cell cycle arrest but significantly increased apoptosis in imatinib sensitive GIST-T1 cells. We conclude that intracellular imatinib levels are primarily determined by lysosomal sequestration and do not depend on SLC22A1 expression.status: publishe

    Molecular Comparison of Imatinib-Naive and Resistant Gastrointestinal Stromal Tumors: Differentially Expressed microRNAs and mRNAs

    No full text
    Despite the success of imatinib in advanced gastrointestinal stromal tumor (GIST) patients, 50% of the patients experience resistance within two years of treatment underscoring the need to get better insight into the mechanisms conferring imatinib resistance. Here the microRNA and mRNA expression profiles in primary (imatinib-naïve) and imatinib-resistant GIST were examined. Fifty-three GIST samples harboring primary KIT mutations (exon 9; n = 11/exon 11; n = 41/exon 17; n = 1) and comprising imatinib-naïve (IM-n) (n = 33) and imatinib-resistant (IM-r) (n = 20) tumors, were analyzed. The microRNA expression profiles were determined and from a subset (IM-n, n = 14; IM-r, n = 15) the mRNA expression profile was established. Ingenuity pathway analyses were used to unravel biochemical pathways and gene networks in IM-r GIST. Thirty-five differentially expressed miRNAs between IM-n and IM-r GIST samples were identified. Additionally, miRNAs distinguished IM-r samples with and without secondary KIT mutations. Furthermore 352 aberrantly expressed genes were found in IM-r samples. Pathway and network analyses revealed an association of differentially expressed genes with cell cycle progression and cellular proliferation, thereby implicating genes and pathways involved in imatinib resistance in GIST. Differentially expressed miRNAs and mRNAs between IM-n and IM-r GIST were identified. Bioinformatic analyses provided insight into the genes and biochemical pathways involved in imatinib-resistance and highlighted key genes that may be putative treatment targets.status: publishe
    corecore