23 research outputs found

    Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium.

    Get PDF
    Development Psychopathology in context: famil

    Excess winter deaths caused by cardiovascular diseases are associated with both mild winter temperature and socio-economic inequalities in the U.S.

    No full text
    Mortality from cardiovascular diseases (CVD) exhibits seasonal variation. For example, 30% more deaths occurred in winter compared to summer in a multicountry study [1]. The effect of cold temperature on several CVD risk factors and on seasonal influenza infection may partially underlie this seasonal variation [2] and [3]. However an unexplained paradox has been observed: seasonality in CVD mortality is larger in temperate mid-latitude countries (e.g. Portugal) than in colder northern countries (e.g. Scandinavian countries) [1]. This paradox has also been previously observed in Europe for overall mortality, and it may relate to uneven proportions between countries of people who are unable to adequately protect themselves against cold due to low socio-economic status (SES), e.g. inadequate clothing, housing insulation and heating systems [4] and [5]. We hypothesized that the seasonal variability in CVD mortality is larger in low socio-economic U.S. states experiencing mild winters compared to high socio-economic states experiencing cold winters

    Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers.

    No full text
    We identify inherited genetic variants associated with telomere length that may also confer risk for childhood cancers. Analyses reveal that genetic predisposition to longer telomere length increased risk of neuroblastoma, and potentially risk of osteosarcoma and acute lymphoblastic leukemia.Aberrant telomere lengthening is an important feature of cancer cells in adults and children. In addition to somatic mutations, germline polymorphisms in telomere maintenance genes impact telomere length. Whether these telomere-associated polymorphisms affect risk of childhood malignancies remains largely unexplored. We collected genome-wide data from three groups with pediatric malignancies [neuroblastoma (N = 1516), acute lymphoblastic leukemia (ALL) (N = 958) and osteosarcoma (N = 660)] and three control populations (N = 6892). Using case-control comparisons, we analyzed eight single nucleotide polymorphisms (SNPs) in genes definitively associated with interindividual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208 and RTEL1. Six of these SNPs were associated (P < 0.05) with neuroblastoma risk, one with leukemia risk and one with osteosarcoma risk. The allele associated with longer LTL increased cancer risk for all these significantly associated SNPs. Using a weighted linear combination of the eight LTL-associated SNPs, we observed that neuroblastoma patients were predisposed to longer LTL than controls, with each standard deviation increase in genotypically estimated LTL associated with a 1.15-fold increased odds of neuroblastoma (95%CI = 1.09-1.22; P = 7.9x10(-7)). This effect was more pronounced in adolescent-onset neuroblastoma patients (OR = 1.46; 95%CI = 1.03-2.08). A one standard deviation increase in genotypically estimated LTL was more weakly associated with osteosarcoma risk (OR = 1.10; 95%CI = 1.01-1.19; P = 0.017) and leukemia risk (OR = 1.07; 95%CI = 1.00-1.14; P = 0.044), specifically for leukemia patients who relapsed (OR = 1.19; 95%CI = 1.01-1.40; P = 0.043). These results indicate that genetic predisposition to longer LTL is a newly identified risk factor for neuroblastoma and potentially for other cancers of childhood

    Genetic variation associated with longer telomere length increases risk of chronic lymphocytic leukemia.

    No full text
    Background: Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Shorter mean telomere length in leukemic cells has been associated with more aggressive disease. Germline polymorphisms in telomere maintenance genes affect telomere length and may contribute to CLL susceptibility. Methods: We collected genome-wide data from two groups of patients with CLL (N = 273) and two control populations (N = 5,725). In ancestry-adjusted case-control comparisons, we analyzed eight SNPs in genes definitively associated with inter-individual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208, and RTEL1. Results: Three of the eight LTL-associated SNPs were associated with CLL risk at P < 0.05, including those near: TERC [OR, 1.46; 95% confidence interval (CI), 1.15-1.86; P = 1.8 x 10(-3)], TERT (OR = 1.23; 95% CI, 1.02-1.48; P = 0.030), and OBFC1 (OR, 1.36; 95% CI, 1.08-1.71; P = 9.6 x 10(-3)). Using a weighted linear combination of the eight LTL-associated SNPs, we observed that CLL patients were predisposed to longer LTL than controls in both case-control sets (P = 9.4 x 10(-4) and 0.032, respectively). CLL risk increased monotonically with increasing quintiles of the weighted linear combination. Conclusions: Genetic variants in TERC, TERT, and OBFC1 are associated with both longer LTL and increased CLL risk. Because the human CST complex competes with shelterin for telomeric DNA, future work should explore the role of OBFC1 and other CST complex genes in leukemogenesis. Impact: A genetic predisposition to longer telomere length is associated with an increased risk of CLL, suggesting that the role of telomere length in CLL etiology may be distinct from its role in disease progression

    Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk.

    No full text
    Telomere maintenance has emerged as an important molecular feature with impacts on adult glioma susceptibility and prognosis. Whether longer or shorter leukocyte telomere length (LTL) is associated with glioma risk remains elusive and is often confounded by the effects of age and patient treatment. We sought to determine if genotypically-estimated LTL is associated with glioma risk and if inherited single nucleotide polymorphisms (SNPs) that are associated with LTL are glioma risk factors. Using a Mendelian randomization approach, we assessed differences in genotypicallyestimated relative LTL in two independent glioma case-control datasets from the UCSF Adult Glioma Study (652 patients and 3735 controls) and The Cancer Genome Atlas (478 non-overlapping patients and 2559 controls). LTL estimates were based on a weighted linear combination of subject genotype at eight SNPs, previously associated with LTL in the ENGAGE Consortium Telomere Project. Mean estimated LTL was 31bp (5.7%) longer in glioma patients than controls in discovery analyses (P=7.82x10-8) and 27bp (5.0%) longer in glioma patients than controls in replication analyses (1.48x10-3). Glioma risk increased monotonically with each increasing septile of LTL (O. R.=1.12; P=3.83x10-12). Four LTL-associated SNPs were significantly associated with glioma risk in pooled analyses, including those in the telomerase component genes TERC (O. R.=1.14; 95% C. I.=1.03-1.28) and TERT (O. R.=1.39; 95% C.I.=1.27-1.52), and those in the CST complex genes OBFC1 (O. R.=1.18; 95% C. I.=1.05-1.33) and CTC1 (O. R.=1.14; 95% C. I.=1.02-1.28). Future work is needed to characterize the role of the CST complex in gliomagenesis and further elucidate the complex balance between ageing, telomere length, and molecular carcinogenesis
    corecore