270 research outputs found

    Coronal hole boundaries evolution at small scales: I. EIT 195 A and TRACE 171 A view

    Full text link
    We aim at studying the small-scale evolution at the boundaries of an equatorial coronal hole connected with a channel of open magnetic flux with the polar region and an `isolated' one in the extreme-ultraviolet spectral range. We intend to determine the spatial and temporal scale of these changes. Imager data from TRACE in the Fe IX/X 171 A passband and EIT on-board Solar and Heliospheric Observatory in the Fe XII 195 A passband were analysed. We found that small-scale loops known as bright points play an essential role in coronal holes boundaries evolution at small scales. Their emergence and disappearance continuously expand or contract coronal holes. The changes appear to be random on a time scale comparable with the lifetime of the loops seen at these temperatures. No signature was found for a major energy release during the evolution of the loops. Although coronal holes seem to maintain their general shape during a few solar rotations, a closer look at their day-by-day and even hour-by-hour evolution demonstrates a significant dynamics. The small-scale loops (10" - 40" and smaller) which are abundant along coronal hole boundaries have a contribution to the small-scale evolution of coronal holes. Continuous magnetic reconnection of the open magnetic field lines of the coronal hole and the closed field lines of the loops in the quiet Sun is more likely to take place.Comment: 7 pages, 6 figures. in press in A&

    Can We Improve the Preprocessing of Photospheric Vector Magnetograms by the Inclusion of Chromospheric Observations?

    Get PDF
    The solar magnetic field is key to understanding the physical processes in the solar atmosphere. Nonlinear force-free codes have been shown to be useful in extrapolating the coronal field upward from underlying vector boundary data. However, we can only measure the magnetic field vector routinely with high accuracy in the photosphere, and unfortunately these data do not fulfill the force-free condition. We must therefore apply some transformations to these data before nonlinear force-free extrapolation codes can be self-consistently applied. To this end, we have developed a minimization procedure that yields a more chromosphere-like field, using the measured photospheric field vectors as input. The procedure includes force-free consistency integrals, spatial smoothing, and -- newly included in the version presented here -- an improved match to the field direction as inferred from fibrils as can be observed in, e.g., chromospheric Hα\alpha images. We test the procedure using a model active-region field that included buoyancy forces at the photospheric level. The proposed preprocessing method allows us to approximate the chromospheric vector field to within a few degrees and the free energy in the coronal field to within one percent.Comment: 22 pages, 6 Figur

    Self-consistent stationary MHD shear flows in the solar atmosphere as electric field generators

    Full text link
    Magnetic fields and flows in coronal structures, for example, in gradual phases in flares, can be described by 2D and 3D magnetohydrostatic (MHS) and steady magnetohydrodynamic (MHD) equilibria. Within a physically simplified, but exact mathematical model, we study the electric currents and corresponding electric fields generated by shear flows. Starting from exact and analytically calculated magnetic potential fields, we solveid the nonlinear MHD equations self-consistently. By applying a magnetic shear flow and assuming a nonideal MHD environment, we calculated an electric field via Faraday's law. The formal solution for the electromagnetic field allowed us to compute an expression of an effective resistivity similar to the collisionless Speiser resistivity. We find that the electric field can be highly spatially structured, or in other words, filamented. The electric field component parallel to the magnetic field is the dominant component and is high where the resistivity has a maximum. The electric field is a potential field, therefore, the highest energy gain of the particles can be directly derived from the corresponding voltage. In our example of a coronal post-flare scenario we obtain electron energies of tens of keV, which are on the same order of magnitude as found observationally. This energy serves as a source for heating and acceleration of particles.Comment: 11 pages, 9 figures, accepted to Astronomy and Astrophysic

    How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    Full text link
    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which have to be optimized for use with data from SDO/HMI. Within this work we describe the corresponding analysis method and evaluate the force-free equilibria by means of how well force-freeness and solenoidal conditions are fulfilled, the angle between magnetic field and electric current and by comparing projections of magnetic field lines with coronal images from SDO/AIA. We also compute the available free magnetic energy and discuss the potential influence of control parameters.Comment: 17 Pages, 6 Figures, Sol. Phys., accepte

    Modeling Magnetic Field Structure of a Solar Active Region Corona using Nonlinear Force-Free Fields in Spherical Geometry

    Full text link
    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20×2020^\circ \times 20^\circ. Additionally, We apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly (AIA) on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.Comment: 34 pages, 8 figures, accepted for publication in Ap

    Statistical study of free magnetic energy and flare productivity of solar active regions

    Full text link
    Photospheric vector magnetograms from Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both non-linear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with ARs' flare index (FI) and find that there is a weak correlation (<60%<60\%) between FME and FI. FME shows slightly improved flare predictability relative to total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.Comment: The paper was submitted to ApJ and it is accepted no

    How to use magnetic field information for coronal loop identification?

    Full text link
    The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible e.g. in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g. potential fields (current free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.Comment: 14 pages, 3 figure

    Multiwavelength observations of a partially eruptive filament on 2011 September 8

    Full text link
    In this paper, we report our multiwavelength observations of a partial filament eruption event in NOAA active region 11283 on 2011 September 8. A magnetic null point and the corresponding spine and separatrix surface are found in the active region. Beneath the null point, a sheared arcade supports the filament along the highly complex and fragmented polarity inversion line. After being activated, the sigmoidal filament erupted and split into two parts. The major part rose at the speeds of 90-150 km s1^{-1} before reaching the maximum apparent height of \sim115 Mm. Afterwards, it returned to the solar surface in a bumpy way at the speeds of 20-80 km s1^{-1}. The rising and falling motions were clearly observed in the extreme-ultravoilet (EUV), UV, and Hα\alpha wavelengths. The failed eruption of the main part was associated with an M6.7 flare with a single hard X-ray source. The runaway part of the filament, however, separated from and rotated around the major part for \sim1 turn at the eastern leg before escaping from the corona, probably along large-scale open magnetic field lines. The ejection of the runaway part resulted in a very faint coronal mass ejection (CME) that propagated at an apparent speed of 214 km s1^{-1} in the outer corona. The filament eruption also triggered transverse kink-mode oscillation of the adjacent coronal loops in the same AR. The amplitude and period of the oscillation were 1.6 Mm and 225 s. Our results are important for understanding the mechanisms of partial filament eruptions and provide new constraints to theoretical models. The multiwavelength observations also shed light on space weather prediction.Comment: 46 pages, 17 figures, 1 table, accepted for publication in Ap

    Magneto-static modeling from Sunrise/IMaX: application to an active region observed with Sunrise II

    Get PDF
    T. Wiegelmann et. al.©2017 The American Astronomical Society. All rights reserved.Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the Sunrise balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO/HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with Sunrise I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110–130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea. The used HMI-data are courtesy of NASA/SDO and the HMI science team. TW acknowledges DLR-grant 50 OC 1301 and DFG-grant WI 3211/4-1. T.N. acknowledges support by the UK's Science and Technology Facilities Council via Consolidated Grants ST/K000950/1 and ST/N000609/1. D.N. was supported from GA ČR under grant numbers 16-05011S and 16-13277S. The Astronomical Institute Ondřejov is supported by the project RVO:67985815.Peer reviewe

    Nonlinear force-free reconstruction of the global solar magnetic field: methodology

    Full text link
    We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday's equation, give rise to a respective normal field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modelled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition - the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.Comment: 18 pages, 5 figures, Solar Physic
    corecore