738 research outputs found

    Linear magnetoresistance in a quasi-free two dimensional electron gas in an ultra-high mobility GaAs quantum well

    Get PDF
    We report a magnetotransport study of an ultra-high mobility (μˉ25×106\bar{\mu}\approx 25\times 10^6\,cm2^2\,V1^{-1}\,s1^{-1}) nn-type GaAs quantum well up to 33 T. A strong linear magnetoresistance (LMR) of the order of 105^5 % is observed in a wide temperature range between 0.3 K and 60 K. The simplicity of our material system with a single sub-band occupation and free electron dispersion rules out most complicated mechanisms that could give rise to the observed LMR. At low temperature, quantum oscillations are superimposed onto the LMR. Both, the featureless LMR at high TT and the quantum oscillations at low TT follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α\alpha that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond ν=1\nu=1 that likely originate from a different transport mechanism for the composite fermions

    Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in Bi2_2Se3_3 with high charge-carrier density

    Get PDF
    Topological insulators are ideally represented as having an insulating bulk with topologically protected, spin-textured surface states. However, it is increasingly becoming clear that these surface transport channels can be accompanied by a finite conducting bulk, as well as additional topologically trivial surface states. To investigate these parallel conduction transport channels, we studied Shubnikov-de Haas oscillations in Bi2_2Se3_3 thin films, in high magnetic fields up to 30 T so as to access channels with a lower mobility. We identify a clear Zeeman-split bulk contribution to the oscillations from a comparison between the charge-carrier densities extracted from the magnetoresistance and the oscillations. Furthermore, our analyses indicate the presence of a two-dimensional state and signatures of additional states the origin of which cannot be conclusively determined. Our findings underpin the necessity of theoretical studies on the origin of and the interplay between these parallel conduction channels for a careful analysis of the material's performance.Comment: Manuscript including supplemental materia

    Modelling six sustainable development transformations in Australia and their accelerators, impediments, enablers, and interlinkages

    Full text link
    There is an urgent need to accelerate progress on the Sustainable Development Goals (SDGs) and recent research has identified six critical transformations. It is important to demonstrate how these transformations could be practically accelerated in a national context and what their combined effects would be. Here we bridge national systems modelling with transformation storylines to provide an analysis of a Six Transformations Pathway for Australia. We explore important policies to accelerate progress, synergies and trade-offs, and conditions that determine policy success. We find that implementing policy packages to accelerate each transformation would boost performance on the SDGs by 2030 (+23% above the baseline). Policymakers can maximize transformation synergies through investments in energy decarbonization, resilience, social protection, and sustainable food systems, while managing trade-offs for income and employment. To overcome resistance to transformations, ambitious policy action will need to be underpinned by technological, social, and political enabling conditions

    Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3

    Get PDF
    We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bulk and surface carriers. The magneto- resistance of Bi2Se3 is found to be highly anisotropic. In the presence of a parallel electric and magnetic field, we observe a strong negative longitudinal magneto-resistance that has been consid- ered as a smoking-gun for the presence of chiral fermions in a certain class of semi-metals due to the so-called axial anomaly. Its observation in a three-dimensional topological insulator implies that the axial anomaly may be in fact a far more generic phenomenon than originally thought.Comment: 6 pages, 4 figure

    Electron-Hole Tunneling Revealed by Quantum Oscillations in the Nodal-Line Semimetal HfSiS

    Get PDF
    We report a study of quantum oscillations in the high-field magnetoresistance of the nodal-line semimetal HfSiS. In the presence of a magnetic field up to 31 T parallel to the c axis, we observe quantum oscillations originating both from orbits of individual electron and hole pockets, and from magnetic breakdown between these pockets. In particular, we reveal a breakdown orbit enclosing one electron and one hole pocket in the form of a “figure of eight,” which is a manifestation of Klein tunneling in momentum space, although in a regime of partial transmission due to the finite separation between the pockets. The observed very strong dependence of the oscillation amplitude on the field angle and the cyclotron masses of the orbits are in agreement with the theoretical predictions for this novel tunneling phenomenon

    Field-induced quasi-particle tunneling in the nodal-line semimetal HfSiS revealed by de Haas-van Alphen quantum oscillations

    Get PDF
    We present a de Haas–van Alphen quantum oscillation study of the Dirac nodal-line semimetal HfSiS up to 32 T to unravel the structure of the high-frequency magnetic breakdown spectrum that was previously obscured in transport experiments. Despite a threefold enhanced gap between adjacent electron and hole pockets relative to the sister compound ZrSiS, a large number of large-area magnetic breakdown orbits enclosing the nodal-loop are identified. All breakdown orbits are assigned by extracting their cyclotron masses. Moreover, one additional low-frequency magnetic breakdown orbit, previously absent in ZrSiS, is observed and attributed to the larger spin-orbit interaction in HfSiS

    Applying consumer responsibility principle in evaluating environmental load of carbon emissions

    Get PDF
    There is a need for a proper indicator in order to assess the environmental impact of international trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this study is to show from a methodological perspective how the carbon footprint, combined with input- output models can be used for analysing the impacts of international trade on the sustainable use of national resources in a country. The use of the input-output approach has the essential advantage of being able to track the transformation of goods through the economy. The study examines the environmental impact of consumption related to international trade, using the consumer responsibility principle. In this study the use of the carbon footprint and input-output methodology is shown on the example of the Hungarian consumption and the impact of international trade. Moving from a production- based approach in climate policy to a consumption-perspective principle and allocation, would also help to increase the efficiency of emission reduction targets and the evaluation of the ecological impacts of international trade

    Targeting 1.5 degrees with the global carbon footprint of the Australian Capital Territory

    Full text link
    In 2019 the Australian Capital Territory (ACT) government stated an ambition to prioritise reduction of Scope 3 greenhouse gas emissions, the size of which had not been fully quantified previously. This study calculated the total carbon footprint of the ACT in 2018, including Scope 1, 2 and 3 emissions and modelled scenarios to reduce all emissions in line with a 1.5 °C target approach. This is the first time a multi-scale analysis of local, sub-national and international supply chains has been undertaken for a city, using a nested and trade-adjusted global multi-region input-output model. This allowed for the quantification of global origins and destinations of emissions, which showed that the 2018 carbon footprint for the ACT was approximately 34.7 t CO2-eq/cap, with 83% attributed to Scope 3. Main contributions came from transport, electricity, manufacturing and public administration and safety, with emissions generated primarily in Australian States and Territories. Modelling in accordance with a 1.5 °C warming scenario showed a plausible reduction to 5.2 t CO2-eq/cap by 2045 (excluding offsets or carbon dioxide removal technologies), with remaining emissions predominantly embodied in international supply chains. This study demonstrates the radical changes required by a wealthy Australian city to achieve 1.5 °C compliance and identifies sectors and supply chains for prioritising policies to best achieve this outcome
    corecore