18 research outputs found

    Myeloproliferative Diseases as Possible Risk Factor for Development of Chronic Thromboembolic Pulmonary Hypertension—A Genetic Study

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease which is often caused by recurrent emboli. These are also frequently found in patients with myeloproliferative diseases. While myeloproliferative diseases can be caused by gene defects, the genetic predisposition to CTEPH is largely unexplored. Therefore, the objective of this study was to analyse these genes and further genes involved in pulmonary hypertension in CTEPH patients. A systematic screening was conducted for pathogenic variants using a gene panel based on next generation sequencing. CTEPH was diagnosed according to current guidelines. In this study, out of 40 CTEPH patients 4 (10%) carried pathogenic variants. One patient had a nonsense variant (c.2071A>T p.Lys691*) in the BMPR2 gene and three further patients carried the same pathogenic variant (missense variant, c.1849G>T p.Val617Phe) in the Janus kinase 2 (JAK2) gene. The latter led to a myeloproliferative disease in each patient. The prevalence of this JAK2 variant was significantly higher than expected (p < 0.0001). CTEPH patients may have a genetic predisposition more often than previously thought. The predisposition for myeloproliferative diseases could be an additional risk factor for CTEPH development. Thus, clinical screening for myeloproliferative diseases and genetic testing may be considered also for CTEPH patients

    Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: a clinical consensus statement of the ESC working group on pulmonary circulation and right ventricular function.

    Get PDF
    The current treatment algorithm for chronic thromboembolic pulmonary hypertension (CTEPH) as depicted in the 2022 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines on the diagnosis and treatment of pulmonary hypertension (PH) includes a multimodal approach of combinations of pulmonary endarterectomy (PEA), balloon pulmonary angioplasty (BPA) and medical therapies to target major vessel pulmonary vascular lesions, and microvasculopathy. Today, BPA of >1700 patients has been reported in the literature from centers in Asia, the US, and also Europe; many more patients have been treated outside literature reports. As BPA becomes part of routine care of patients with CTEPH, benchmarks for safe and effective care delivery become increasingly important. In light of this development, the ESC Working Group on Pulmonary Circulation and Right Ventricular Function has decided to publish a document that helps standardize BPA to meet the need of uniformity in patient selection, procedural planning, technical approach, materials and devices, treatment goals, complications including their management, and patient follow-up, thus complementing the guidelines. Delphi methodology was utilized for statements that were not evidence based. First, an anatomical nomenclature and a description of vascular lesions are provided. Second, treatment goals and definitions of complete BPA are outlined. Third, definitions of complications are presented which may be the basis for a standardized reporting in studies involving BPA. The document is intended to serve as a companion to the official ESC/ERS guidelines

    3D Visualization, Skeletonization and Branching Analysis of Blood Vessels in Angiogenesis

    Get PDF
    Angiogenesis is the process of new blood vessels growing from existing vasculature. Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net neural network is used to segment blood vessels from the tissues. Second, image registration is used to align the consecutive images. Coarse registration using an image-intensity optimization technique, followed by finetuning using a neural network based on Spatial Transformers, results in an excellent alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are aligned and interpolated using the results of the image registration, resulting in a visualized 3D model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct, visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens innovative perspectives in the pathophysiological understanding of vascular morphogenesis under different pathophysiological conditions and its potential diagnostic role

    Balloon pulmonary angioplasty in the treatment of chronic thromboembolic pulmonary hypertension: recent advances and future perspectives

    Get PDF
    Chronic thromboembolic pulmonary hypertension constitutes a significant late sequela of pulmonary embolism. It is defined by precapillary pulmonary hypertension with mismatched perfusion defects and pulmonary arterial lesions after at least 3 months of effective anticoagulation. Symptomatic patients who do not have pulmonary hypertension yet fulfill all other criteria are diagnosed with chronic thromboembolic disease. The treatment of chronic thromboembolic pulmonary hypertension is based on 3 pillars: pulmonary endarterectomy, pulmonary arterial hypertension–targeted medication, and balloon pulmonary angioplasty. Surgical pulmonary endarterectomy is the standard of care and can be performed in 2/3 of all patients. Targeted medication with or without balloon pulmonary angioplasty is reserved for inoperable patients or those with residual pulmonary hypertension after surgical treatment. Despite the lack of profound evidence, the treatment of chronic thromboembolic disease is similar to that of patients with pulmonary hypertension: pulmonary endarterectomy is offered to operable individuals, whereas balloon pulmonary angioplasty is considered in inoperable patients. Since therapeutic strategies are complex, and diagnostic and therapeutic procedures—demanding, treatment in a specialized, experienced center is mandatory

    Non-Invasive Approach for Evaluation of Pulmonary Hypertension Using Extracellular Vesicle-Associated Small Non-Coding RNA

    No full text
    Extracellular vesicles are released by numerous cell types of the human body under physiological but also under pathophysiological conditions. They are important for cell&ndash;cell communication and carry specific signatures of peptides and RNAs. In this study, we aimed to determine whether extracellular vesicles isolated from patients with pulmonary hypertension show a disease specific signature of small non-coding RNAs and thus have the potential to serve as diagnostic and prognostic biomarkers. Extracellular vesicles were isolated from the serum of 23 patients with chronic thromboembolic pulmonary hypertension (CTEPH) and 23 controls using two individual methods: a column-based method or by precipitation. Extracellular vesicle- associated RNAs were analyzed by next-generation sequencing applying molecular barcoding, and differentially expressed small non-coding RNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). We identified 18 microRNAs and 21 P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) or piRNA clusters that were differentially expressed in CTEPH patients compared with controls. Bioinformatic analysis predicted a contribution of these piRNAs to the progression of cardiac and vascular remodeling. Expression levels of DQ593039 correlated with clinically meaningful parameters such as mean pulmonary arterial pressure, pulmonary vascular resistance, right ventricular systolic pressure, and levels of N-terminal pro-brain natriuretic peptide. Thus, we identified the extracellular vesicle- derived piRNA, DQ593039, as a potential biomarker for pulmonary hypertension and right heart disease

    Non-Invasive Approach for Evaluation of Pulmonary Hypertension Using Extracellular Vesicle-Associated Small Non-Coding RNA.

    No full text
    Extracellular vesicles are released by numerous cell types of the human body under physiological but also under pathophysiological conditions. They are important for cell-cell communication and carry specific signatures of peptides and RNAs. In this study, we aimed to determine whether extracellular vesicles isolated from patients with pulmonary hypertension show a disease specific signature of small non-coding RNAs and thus have the potential to serve as diagnostic and prognostic biomarkers. Extracellular vesicles were isolated from the serum of 23 patients with chronic thromboembolic pulmonary hypertension (CTEPH) and 23 controls using two individual methods: a column-based method or by precipitation. Extracellular vesicle- associated RNAs were analyzed by next-generation sequencing applying molecular barcoding, and differentially expressed small non-coding RNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). We identified 18 microRNAs and 21 P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) or piRNA clusters that were differentially expressed in CTEPH patients compared with controls. Bioinformatic analysis predicted a contribution of these piRNAs to the progression of cardiac and vascular remodeling. Expression levels of DQ593039 correlated with clinically meaningful parameters such as mean pulmonary arterial pressure, pulmonary vascular resistance, right ventricular systolic pressure, and levels of N-terminal pro-brain natriuretic peptide. Thus, we identified the extracellular vesicle- derived piRNA, DQ593039, as a potential biomarker for pulmonary hypertension and right heart disease

    Exercise right heart catheterization before and after balloon pulmonary angioplasty in inoperable patients with chronic thromboembolic pulmonary hypertension

    No full text
    Background: Balloon pulmonary angioplasty is an evolving, interventional treatment option for inoperable patients with chronic thromboembolic pulmonary hypertension (CTEPH). Pulmonary hypertension at rest as well as exercise capacity is considered to be relevant outcome parameters. The aim of the present study was to determine whether measurement of pulmonary hemodynamics during exercise before and six months after balloon pulmonary angioplasty have an added value. Methods: From March 2014 to July 2018, 172 consecutive patients underwent balloon pulmonary angioplasty. Of these, 64 consecutive patients with inoperable CTEPH underwent a comprehensive diagnostic workup that included right heart catheterization at rest and during exercise before balloon pulmonary angioplasty treatments and six months after the last intervention. Results: Improvements in pulmonary hemodynamics at rest and during exercise, in quality of life, and in exercise capacity were observed six months after balloon pulmonary angioplasty: WHO functional class improved in 78% of patients. The mean pulmonary arterial pressure (mPAP) at rest was reduced from 41 ± 9 to 31 ± 9 mmHg (p < 0.0001). The mPAP/cardiac output slope decreased after balloon pulmonary angioplasty (11.2 ± 25.6 WU to 7.7 ± 4.1 WU; p < 0.0001), and correlated with N-terminal fragment of pro-brain natriuretic peptide (p = 0.035) and 6-minute walking distance (p = 0.01). Conclusions: Exercise right heart catheterization provides valuable information on the changes of pulmonary hemodynamics after balloon pulmonary angioplasty in inoperable CTEPH patients that are not obtainable by measuring resting hemodynamics

    Dynamics of high-sensitivity cardiac troponin T during therapy with balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension.

    No full text
    AIMS:Balloon pulmonary angioplasty (BPA) is an interventional treatment modality for inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Therapy monitoring, based on non-invasive biomarkers, is a clinical challenge. This post-hoc study aimed to assess dynamics of high-sensitivity cardiac troponin T (hs-cTnT) as a marker for myocardial damage and its relation to N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels as a marker for cardiac wall stress. METHODS AND RESULTS:This study included 51 consecutive patients who underwent BPA treatment and completed a 6-month follow-up (6-MFU) between 3/2014 and 3/2017. Biomarker measurement was performed consecutively prior to each BPA and at 6-MFU. In total, the 51 patients underwent an average of 5 BPA procedures. The 6-month survival rate was 96.1%. The baseline (BL) meanPAP (39.5±12.1mmHg) and PVR (515.8±219.2dyn×sec×cm-5) decreased significantly within the 6-MFU (meanPAP: 32.6±12.6mmHg, P<0.001; PVR: 396.9±182.6dyn×sec×cm-5, P<0.001). At BL, the median hs-cTnT level was 11 (IQR 6-16) ng/L and the median NT-proBNP level was 820 (IQR 153-1872) ng/L. The levels of both biomarkers decreased steadily after every BPA, showing the first significant difference after the first procedure. Within the 6-MFU, hs-cTnT levels (7 [IQR 5-12] ng/L; P<0.001) and NT-proBNP levels (159 [IQR 84-464] ng/l; P<0.001) continued to decrease. The hs-cTnT levels correlated with the PVR (rrs = 0.42; p = 0.005), the meanPAP (rrs = 0.32; p = 0.029) and the NT-proBNP (rrs = 0.51; p<0.001) levels at BL. CONCLUSION:Non-invasive biomarker measurement provides valuable evidence for the decreasing impairment of myocardial function and structure during BPA therapy. Changes in hs-cTNT levels are suggestive for a reduction in ongoing myocardial damage

    3D Visualization, Skeletonization and Branching Analysis of Blood Vessels in Angiogenesis

    No full text
    Angiogenesis is the process of new blood vessels growing from existing vasculature. Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net neural network is used to segment blood vessels from the tissues. Second, image registration is used to align the consecutive images. Coarse registration using an image-intensity optimization technique, followed by finetuning using a neural network based on Spatial Transformers, results in an excellent alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are aligned and interpolated using the results of the image registration, resulting in a visualized 3D model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct, visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens innovative perspectives in the pathophysiological understanding of vascular morphogenesis under different pathophysiological conditions and its potential diagnostic role
    corecore