31 research outputs found

    Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma

    Get PDF
    AbstractTumor stage, age of patient, and amplification of MYCN predict disease outcome in neuroblastoma. To gain insight into the underlying molecular pathways, we have obtained expression profiles from 94 primary neuroblastoma specimens. Advanced tumor stages show a characteristic expression profile that includes downregulation of multiple genes involved in signal transduction through Fyn and the actin cytoskeleton. High expression of Fyn and high Fyn kinase activity are restricted to low-stage tumors. In culture, expression of active Fyn kinase induces differentiation and growth arrest of neuroblastoma cells. Expression of Fyn predicts long-term survival independently of MYCN amplification. Amplification of MYCN correlates with deregulation of a distinct set of genes, many of which are target genes of Myc. Our data demonstrate a causal role for Fyn kinase in the genesis of neuroblastoma

    Somatic Mutations of PIK3R1 Promote Gliomagenesis

    Get PDF
    The phosphoinositide 3-kinase (PI3K) pathway is targeted for frequent alteration in glioblastoma (GBM) and is one of the core GBM pathways defined by The Cancer Genome Atlas. Somatic mutations of PIK3R1 are observed in multiple tumor types, but the tumorigenic activity of these mutations has not been demonstrated in GBM. We show here that somatic mutations in the iSH2 domain of PIK3R1 act as oncogenic driver events. Specifically, introduction of a subset of the mutations identified in human GBM, in the nSH2 and iSH2 domains, increases signaling through the PI3K pathway and promotes tumorigenesis of primary normal human astrocytes in an orthotopic xenograft model. Furthermore, we show that cells that are dependent on mutant P85α-mediated PI3K signaling exhibit increased sensitivity to a small molecule inhibitor of AKT. Together, these results suggest that GBM patients whose tumors carry mutant PIK3R1 alleles may benefit from treatment with inhibitors of AKT

    Reversing Platinum Resistance in High-Grade Serous Ovarian Carcinoma: Targeting BRCA and the Homologous Recombination System

    No full text
    Resistance to platinum chemotherapy is one of the main factors driving ovarian cancer mortality, and overcoming platinum resistance is considered one of the greatest challenges in ovarian cancer research. Genetic and functional evidence points to the homologous recombination (HR) DNA repair system, and BRCA1 and BRCA2 in particular, as main determinants of response to platinum therapy. BRCA-mutant ovarian cancers are especially sensitive to platinum, associated with better survival, and amenable to poly ADP ribose polymerase inhibitor treatment. Here, we discuss a therapeutic concept that seeks to disrupt HR capacity via targeting of BRCA1 and BRCA2 functionality in order to reverse platinum resistance in BRCA-proficient high-grade serous ovarian cancers (HGSOC). We review the molecular signaling pathways that converge on BRCA1 and BRCA2, their activation status in ovarian cancer, and therapeutic options to modulate BRCA function. Several recent publications demonstrate efficient chemosensitization of BRCA-proficient cancers by combining targeted therapy with standard platinum-based agents. Due to its inherent genomic heterogeneity, molecularly defined subgroups of HGSOC may require different approaches. We seek to provide an overview of available agents and their potential use to reverse platinum resistance by inhibiting the HR system, either directly or indirectly, by targeting oncogenic activators of HR

    Reversing Platinum Resistance in High-Grade Serous Ovarian Carcinoma: Targeting BRCA and the Homologous Recombination System

    No full text
    Resistance to platinum chemotherapy is one of the main factors driving ovarian cancer mortality, and overcoming platinum resistance is considered one of the greatest challenges in ovarian cancer research. Genetic and functional evidence points to the homologous recombination (HR) DNA repair system, and BRCA1 and BRCA2 in particular, as main determinants of response to platinum therapy. BRCA-mutant ovarian cancers are especially sensitive to platinum, associated with better survival, and amenable to PARP inhibitor treatment. Here, we discuss a therapeutic concept that seeks to disrupt HR capacity via targeting of BRCA1 and BRCA2 functionality in order to reverse platinum resistance in BRCA-proficient high grade serous ovarian cancers (HGSOCs). We review the molecular signaling pathways that converge on BRCA1 and BRCA2, their activation status in ovarian cancer, and therapeutic options to modulate BRCA function. Several recent publications demonstrate efficient chemosensitization of BRCA-proficient cancers by combining targeted therapy with standard platinum-based agents. Due to its inherent genomic heterogeneity, molecularly defined subgroups of HGSOC may require different approaches. We seek to provide an overview of available agents and their potential use to reverse platinum resistance by inhibiting the HR system, either directly or indirectly, by targeting oncogenic activators of HR. <br/
    corecore