1,646 research outputs found

    Structural, magnetic, electric, dielectric, and thermodynamic properties of multiferroic GeV4S8

    Full text link
    The lacunar spinel GeV4S8 undergoes orbital and ferroelectric ordering at the Jahn-Teller transition around 30 K and exhibits antiferromagnetic order below about 14 K. In addition to this orbitally driven ferroelectricity, lacunar spinels are an interesting material class, as the vanadium ions form V4 clusters representing stable molecular entities with a common electron distribution and a well-defined level scheme of molecular states resulting in a unique spin state per V4 molecule. Here we report detailed x-ray, magnetic susceptibility, electrical resistivity, heat capacity, thermal expansion, and dielectric results to characterize the structural, electric, dielectric, magnetic, and thermodynamic properties of this interesting material, which also exhibits strong electronic correlations. From the magnetic susceptibility, we determine a negative Curie-Weiss temperature, indicative for antiferromagnetic exchange and a paramagnetic moment close to a spin S = 1 of the V4 molecular clusters. The low-temperature heat capacity provides experimental evidence for gapped magnon excitations. From the entropy release, we conclude about strong correlations between magnetic order and lattice distortions. In addition, the observed anomalies at the phase transitions also indicate strong coupling between structural and electronic degrees of freedom. Utilizing dielectric spectroscopy, we find the onset of significant dispersion effects at the polar Jahn-Teller transition. The dispersion becomes fully suppressed again with the onset of spin order. In addition, the temperature dependencies of dielectric constant and specific heat possibly indicate a sequential appearance of orbital and polar order.Comment: 15 pages, 9 figure

    Weak ferromagnetism and glassy state in kappa-(BEDT-TTF)2Hg(SCN)2Br

    Full text link
    Since the first observation of weak ferromagnetism in the charge-transfer salt kappa-(BEDT-TTF)2-Cu[N(CN)2]Cl [U. Welp et al., Phys. Rev. Lett. 69, 840 (1992)], no further evidence of ferromagnetism in this class of organic materials has been reported. Here we present static and dynamic spin susceptibility measurements on kappa-(BEDT-TTF)2Hg(SCN)2Br revealing weak ferromagnetism below about TWF = 20 K. We suggest that frustrated spins in the molecular dimers suppress long-range order, forming a spin-glass ground state in the insulating phase

    Systematic study of the decay rates of antiprotonic helium states

    Full text link
    A systematic study of the decay rates of antiprotonic helium (\pbhef and \pbhet) at CERN AD (Antiproton Decelerator) has been made by a laser spectroscopic method. The decay rates of some of its short-lived states, namely those for which the Auger rates γA\gamma_{\mathrm{A}} are much larger than their radiative decay rates (γrad1\gamma_{\mathrm{rad}} \sim 1 μ\mus1^{-1}), were determined from the time distributions of the antiproton annihilation signals induced by laser beams, and the widths of the atomic resonance lines. The magnitude of the decay rates, especially their relation with the transition multipolarity, is discussed and compared with theoretical calculations.Comment: 6 pages, 5 figures, and 1 tabl

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt

    Sub-gap optical response across the structural phase transition in van der Waals layered \alpha-RuCl3_3

    Get PDF
    We report magnetic, thermodynamic, thermal expansion, and on detailed optical experiments on the layered compound α\alpha-RuCl3_3 focusing on the THz and sub-gap optical response across the structural phase transition from the monoclinic high-temperature to the rhombohedral low-temperature structure, where the stacking sequence of the molecular layers is changed. This type of phase transition is characteristic for a variety of tri-halides crystallizing in a layered honeycomb-type structure and so far is unique, as the low-temperature phase exhibits the higher symmetry. One motivation is to unravel the microscopic nature of spin-orbital excitations via a study of temperature and symmetry-induced changes. We document a number of highly unusual findings: A characteristic two-step hysteresis of the structural phase transition, accompanied by a dramatic change of the reflectivity. An electronic excitation, which appears in a narrow temperature range just across the structural phase transition, and a complex dielectric loss spectrum in the THz regime, which could indicate remnants of Kitaev physics. Despite significant symmetry changes across the monoclinic to rhombohedral phase transition, phonon eigenfrequencies and the majority of spin-orbital excitations are not strongly influenced. Obviously, the symmetry of the single molecular layers determine the eigenfrequencies of most of these excitations. Finally, from this combined terahertz, far- and mid-infrared study we try to shed some light on the so far unsolved low energy (< 1eV) electronic structure of the ruthenium 4d54d^5 electrons in α\alpha-RuCl3_3.Comment: 22 pages, 9 figure

    Hyperfine structure of antiprotonic helium revealed by a laser-microwave-laser resonance method

    Get PDF
    Using a newly developed laser-microwave-laser resonance method, we observed a pair of microwave transitions between hyperfine levels of the (n,L)=(37,35)(n,L)=(37,35) state of antiprotonic helium. This experiment confirms the quadruplet hyperfine structure due to the interaction of the antiproton orbital angular momentum, the electron spin and the antiproton spin as predicted by Bakalov and Korobov. The measured frequencies of νHF+=12.89596±0.00034\nu_{\text HF}^+ =12.89596 \pm 0.00034 GHz and νHF=12.92467±0.00029\nu_{\text HF}^- =12.92467 \pm 0.00029 GHz agree with recent theoretical calculations on a level of 6×105 6 \times10^{-5}.Comment: 4 pages, 4 figures, 1 tabl

    Anisotropic magnetism, superconductivity, and the phase diagram of Rb(1-x)Fe(2-y)Se2

    Full text link
    We report the crystal growth and structural, magnetic, conductivity, and specific heat investigations of Rb(1-x)Fe(2-y)Se2 single crystals with varying stoichiometry prepared by self-flux and Bridgman methods. The system exhibits a strongly anisotropic antiferromagnetic behavior below 400 K. For 1.53 <2-y< 1.6 superconductivity is found, whereas for Fe concentrations 2-y 1.6 insulating and semiconducting behavior is observed, respectively. The sharpest transition to the superconducting state and the highest transition temperature T_c of 32.4 K is found for compositions close to Rb2Fe4Se5. A critical current density j_c of 1.6*10^4 A/cm^2 (at 2 K) is obtained in the superconducting samples with the highest diamagnetic response. In these samples additional intense x-ray reflexes appear, which are incompatible with the tetragonal symmetry. Upper critical fields H_{c2} of ~250 kOe for the in-plane and 630 kOe for the inter-plane configurations are estimated from resistivity in magnetic fields parallel and perpendicular to the c-axis, respectively. In the non-superconducting samples with the Fe concentration below 1.45 both specific heat and susceptibility revealed an anomaly at 220 K which is not related to antiferromagnetic or structural transformations. Comparison with the magnetic behavior of non-superconducting samples provides evidence for the coexistence of superconductivity and static antiferromagnetic order.Comment: 12 pages, 16 figures, 2 table

    On the multiferroic skyrmion-host GaV4S8

    Get PDF
    The lacunar spinel GaV4S8 exhibits orbital ordering at 44 K and shows a complex magnetic phase diagram below 12.7 K, which includes ferromagnetic and cycloidal spin order. At low but finite external magnetic fields, N\'eel-type skyrmions are formed in this material. Skyrmions are whirl-like spin vortices that have received great theoretical interest because of their non-trivial spin topology and that are also considered as basic entities for new data-storage technologies. Interestingly, we found that the orbitally ordered phase shows sizable ferroelectric polarization and that excess spin-driven polarizations appear in all magnetic phases, including the skyrmion-lattice phase. Hence, GaV4S8 shows simultaneous magnetic and polar order and belongs to the class of multiferroics, materials that attracted enormous attention in recent years. Here, we summarize the existing experimental information on the magnetic, electronic, and dielectric properties of GaV4S8. By performing detailed magnetic susceptibility, resistivity, specific heat, and dielectric experiments, we complement the low-temperature phase diagram. Specifically, we show that the low-temperature and low-field ground state of GaV4S8 seems to have a more complex spin configuration than purely collinear ferromagnetic spin order. In addition, at the structural Jahn-Teller transition the magnetic exchange interaction changes from antiferromagnetic to ferromagnetic. We also provide experimental evidence that the vanadium V4 clusters in GaV4S8 can be regarded as molecular units with spin 1/2. However, at high temperatures deviations in the susceptibility show up, indicating that either the magnetic moments of the vanadium atoms fluctuate independently or excited states of the V4 molecule become relevant.Comment: 17 pages, 10 figures, submitted to Phil. Ma
    corecore