1,730 research outputs found
Fast and Scalable Score-Based Kernel Calibration Tests
We introduce the Kernel Calibration Conditional Stein Discrepancy test (KCCSD test), a nonparametric, kernel-based test for assessing the calibration of probabilistic models with well-defined scores. In contrast to previous methods, our test avoids the need for possibly expensive expectation approximations while providing control over its type-I error. We achieve these improvements by using a new family of kernels for score-based probabilities that can be estimated without probability density samples, and by using a conditional goodness-of-fit criterion for the KCCSD test's U-statistic. We demonstrate the properties of our test on various synthetic settings
Simulated relationships between regional temperatures and large-scale circulation: 125 kyr BP (Eemian) and the preindustrial period
To investigate relationships between large-scale circulation and regional-scale temperatures during the last (Eemian) interglacial, a simulation with a general circulation model (GCM) under orbital forcing conditions of 125 kyr BP is compared with a simulation forced with the Late Holocene preindustrial conditions. Consistent with previous GCM simulations for the Eemian, higher northern summer 2-m temperatures are found, which are directly related to the different insolation. Differences in the mean circulation are evident such as, for instance, stronger northern winter westerlies toward Europe, which are associated with warmer temperatures in central and northeastern Europe in the Eemian simulation, while the circulation variability, analyzed by means of a principal component analysis of the sea level pressure (SLP) field, is very similar in both periods. As a consequence of the differences in the mean circulation the simulated Arctic Oscillation (AO) temperature signal in the northern winter, on interannual-to-multidecadal time scales, is weaker during the Eemian than today over large parts of the Northern Hemisphere. Correlations between the AO index and the central European temperature (CET) decrease by about 0.2. The winter and spring SLP anomalies over the North Atlantic/European domain that are most strongly linearly linked to the CET cover a smaller area and are shifted westward over the North Atlantic during the Eemian. However, the strength of the connection between CET and these SLP anomalies is similar in both simulations. The simulated differences in the AO temperature signal and in the SLP anomaly, which is linearly linked to the CET, suggest that during the Eemian the link between the large-scale circulation and temperaturesensitive proxy data from Europe may differ from present-day conditions and that this difference should be taken into account when inferring large-scale climate from temperature-sensitive proxy data
Large spread in the representation of compound long-duration dry and hot spells over Europe in CMIP5
Long-duration, sub-seasonal dry spells in combination with high temperature extremes during summer have led to extreme impacts on society and ecosystems in the past. Such events are expected to become more frequent due to increasing temperatures as a result of anthropogenic climate change. However, there is little information on how long-duration dry and hot spells are represented in global climate models (GCMs). In this study, we evaluate 33 CMIP5 (coupled model intercomparison project 5) GCMs in their representation of long-duration dry spells and temperatures during dry spells. We define a dry spell as a consecutive number of days with a daily precipitation of less than 1 mm. CMIP5 models tend to underestimate the persistence of dry spells in northern Europe, while a large variability exists between model estimates in central and southern Europe, where models have contrasting biases. Throughout Europe, we also find a large spread between models in their representation of temperature extremes during dry spells. In central and southern Europe this spread in temperature extremes between models is related to the representation of dry spells, where models that produce longer dry spells also produce higher temperatures, and vice versa. Our results indicate that this variability in model estimates is due to model differences and not internal variability. At latitudes between 50–60∘ N, the differences in the representation of persistent dry spells are strongly related to the representation of persistent anticyclonic systems, such as atmospheric blocking and subtropical ridges. Furthermore, models simulating a higher frequency of anticyclonic systems than ERA5 also simulate temperatures in dry spells that are between 1.4, and 2.8 K warmer than models with a lower frequency in these areas. Overall, there is a large spread between CMIP5 models in their representation of long-duration dry and hot events that is due to errors in the representation of large-scale anticyclonic systems in certain parts of Europe. This information is important to consider when interpreting the plausibility of future projections from climate models and highlights the potential value that improvements in the representation of anticyclonic systems may have for the simulation of impactful hazards.</p
Sub-gap optical response across the structural phase transition in van der Waals layered \alpha-RuCl
We report magnetic, thermodynamic, thermal expansion, and on detailed optical
experiments on the layered compound -RuCl focusing on the THz and
sub-gap optical response across the structural phase transition from the
monoclinic high-temperature to the rhombohedral low-temperature structure,
where the stacking sequence of the molecular layers is changed. This type of
phase transition is characteristic for a variety of tri-halides crystallizing
in a layered honeycomb-type structure and so far is unique, as the
low-temperature phase exhibits the higher symmetry. One motivation is to
unravel the microscopic nature of spin-orbital excitations via a study of
temperature and symmetry-induced changes. We document a number of highly
unusual findings: A characteristic two-step hysteresis of the structural phase
transition, accompanied by a dramatic change of the reflectivity. An electronic
excitation, which appears in a narrow temperature range just across the
structural phase transition, and a complex dielectric loss spectrum in the THz
regime, which could indicate remnants of Kitaev physics. Despite significant
symmetry changes across the monoclinic to rhombohedral phase transition, phonon
eigenfrequencies and the majority of spin-orbital excitations are not strongly
influenced. Obviously, the symmetry of the single molecular layers determine
the eigenfrequencies of most of these excitations. Finally, from this combined
terahertz, far- and mid-infrared study we try to shed some light on the so far
unsolved low energy (< 1eV) electronic structure of the ruthenium
electrons in -RuCl.Comment: 22 pages, 9 figure
First observation of two hyperfine transitions in antiprotonic He-3
We report on the first experimental results for microwave spectroscopy of the
hyperfine structure of antiprotonic He-3. Due to the helium nuclear spin,
antiprotonic He-3 has a more complex hyperfine structure than antiprotonic He-4
which has already been studied before. Thus a comparison between theoretical
calculations and the experimental results will provide a more stringent test of
the three-body quantum electrodynamics (QED) theory. Two out of four
super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were
observed. The measured frequencies of the individual transitions are
11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current
theoretical values, but still within their estimated errors. Although the
experimental uncertainty for the difference of these frequencies is still very
large as compared to that of theory, its measured value agrees with theoretical
calculations. This difference is crucial to be determined because it is
proportional to the magnetic moment of the antiproton.Comment: 8 pages, 6 figures, just published (online so far) in Physics Letters
GHRS and ORFEUS-II Observations of the Highly Ionized Interstellar Medium Toward ESO141-055
We present Goddard High Resolution Spectrograph and ORFEUS-II measurements of
Si IV, CIV, N V, and O VI absorption in the interstellar medium of the Galactic
disk and halo toward the nucleus of the Seyfert galaxy ESO141-055. The high
ionization absorption is strong, with line strengths consistent with the
spectral signature expected for hot (log T = 5-6) collisionally ionized gas in
either a ``Galactic fountain'' or an inhomogeneous medium containing a mixture
of conductive interfaces and turbulent mixing layers. The total O VI column
density of log N ~ 15 suggests that the scale height of O VI is large (>3 kpc)
in this direction. Comparison of the high ion column densities with
measurements for other sight lines indicates that the highly ionized gas
distribution is patchy. The amount of O VI perpendicular to the Galactic plane
varies by at least a factor of ~4 among the complete halo sight lines thus far
studied. In addition to the high ion absorption, lines of low ionization
species are also present in the spectra. With the possible exception of Ar I,
which may have a lower than expected abundance resulting from partial
photoionization of gas along the sight line, the absorption strengths are
typical of those expected for the warm, neutral interstellar medium. The sight
line intercepts a cold molecular cloud with log N(H2) ~ 19. The cloud has an
identifiable counterpart in IRAS 100-micron emission maps of this region of the
sky. We detect a Ly-alpha absorber associated with ESO141-055 at z = 0.03492.
This study presents an enticing glimpse into the interstellar and intergalactic
absorption patterns that will be observed at high spectral resolution by the
Far Ultraviolet Spectroscopic Explorer.Comment: 24 pages + 8 figures, uses aaspp4.sty. Accepted for publication in
Ap
Composition of agarose substrate affects behavioral output of Drosophila larvae.
In the last decade the Drosophila larva has evolved into a simple model organism offering the opportunity to integrate molecular genetics with systems neuroscience. This led to a detailed understanding of the neuronal networks for a number of sensory functions and behaviors including olfaction, vision, gustation and learning and memory. Typically, behavioral assays in use exploit simple Petri dish setups with either agarose or agar as a substrate. However, neither the quality nor the concentration of the substrate is generally standardized across these experiments and there is no data available on how larval behavior is affected by such different substrates. Here, we have investigated the effects of different agarose concentrations on several larval behaviors. We demonstrate that agarose concentration is an important parameter, which affects all behaviors tested: preference, feeding, learning and locomotion. Larvae can discriminate between different agarose concentrations, they feed differently on them, they can learn to associate an agarose concentration with an odor stimulus and change locomotion on a substrate of higher agarose concentration. Additionally, we have investigated the effect of agarose concentration on three quinine based behaviors: preference, feeding and learning. We show that in all cases examined the behavioral output changes in an agarose concentration-dependent manner. Our results suggest that comparisons between experiments performed on substrates differing in agarose concentration should be done with caution. It should be taken into consideration that the agarose concentration can affect the behavioral output and thereby the experimental outcomes per se potentially due to the initiation of an escape response or changes in foraging behavior on more rigid substrates
Information on antiprotonic atoms and the nuclear periphery from the PS209 experiment
In the PS209 experiments at CERN two kinds of measurements were performed:
the in-beam measurement of X-rays from antiprotonic atoms and the
radiochemical, off-line determination of the yield of annihilation products
with mass number A_t -1 (less by 1 than the target mass). Both methods give
observables which allows to study the peripheral matter density composition and
distribution.Comment: LaTeX (espcrc1 style), 6 pages, 3 EPS figures, 1 table, Proceedings
of the Sixth Biennal Conference on Low-Energy Antiproton Physics LEAP 2000,
Venice, Ital
- …