617 research outputs found

    Marriage, Housework and Fairness

    Get PDF
    I explore the effects of a preference for fairness in the division of housework between two spouses in two different models of household time allocation. Both in the model with agreeing spouses and the model with noncooperative spouses, such a preference has an equalising effect on the division of labour between the partners. In the noncooperative setting, the wife gets better off and the husband worse off in terms of private consumption. I also argue that both the allocation process and the degree of fairness consideration matter for policy outcomes and discuss three policy measures in relation to these two factors.Fairness; housework; unpaid work; household production; household time allocation

    Structural elucidation of the O-antigen polysaccharide from Escherichia coli O125ac and biosynthetic aspects thereof

    Get PDF
    Enteropathogenic Escherichia coli O125, the cause of infectious diarrheal disease, is comprised of two serogroups, viz., O125ab and O125ac, which display the aggregative adherence pattern with epithelial cells. Herein, the structure of the O-antigen polysaccharide from E. coli O125ac:H6 has been elucidated. Sugar analysis revealed the presence of fucose, mannose, galactose and N-acetyl-galactosamine as major components. Unassigned H-1 and C-13 NMR data from one- and two-dimensional NMR experiments of the O125ac O-antigen in conjunction with sugar components were used as input to the CASPER program, which can determine polysaccharide structure in a fully automated way, and resulted in the following branched pentasaccharide structure of the repeating unit: -> 4)[beta-d-Galp-(1 -> 3)]-beta-d-GalpNAc-(1 -> 2)-alpha-d-Manp-(1 -> 3)-alpha-l-Fucp-(1 -> 3)-alpha-d-GalpNAc-(1 ->, where the side chain is denoted by square brackets. The proposed O-antigen structure was confirmed by H-1 and C-13 NMR chemical shift assignments and determination of interresidue connectivities. Based on this structure, that of the O125ab O-antigen, which consists of hexasaccharide repeating units with an additional glucosyl group, was possible to establish in a semi-automated fashion by CASPER. The putative existence of gnu and gne in the gene clusters of the O125 serogroups is manifested by N-acetyl-d-galactosamine residues as the initial sugar residue of the biological repeating unit as well as within the repeating unit. The close similarity between O-antigen structures is consistent with the presence of two subgroups in the E. coli O125 serogroup

    Differential Dynamics at Glycosidic Linkages of an Oligosaccharide as Revealed by 13C NMR Spin Relaxation and Stochastic Modeling

    Get PDF
    Among biomolecules, carbohydrates are unique in that not only can linkages be formed through different positions but the structures may also be branched. The trisaccharide \uf062-D-Glcp-(1\uf0ae3)[\uf062-D-Glcp-(1\uf0ae2)]-\uf061-D-Manp-OMe represents a model of a branched vicinally disubstituted structure. A 13C site-specific isotopologue with labeling in each of the two terminal glucosyl residues enabled acquisition of high-quality 13C NMR relaxation parameters T1, T2 and heteronuclear NOE, with standard deviations of \uf0a3 0.5%. For interpretation of the experimental NMR data a diffusive chain model was used in which the dynamics of the glycosidic linkages is coupled to the global reorientation motion of the trisaccharide. Brownian dynamics simulations relying on the potential of mean force at the glycosidic linkages were employed to evaluate spectral densities of the spin probes. Calculated NMR relaxation parameters showed very good agreement with experimental data, deviating < 3%. The resulting dynamics is described by correlation times of 196 ps and 174 ps for the \uf062-(1\uf0ae2)- and \uf062-(1\uf0ae3)-linked glucosyl residues, respectively, i.e., different and linkage dependent. Notably, the devised computational protocol was performed without any fitting of parameters

    False localization of TMJ sounds to side is an important source of error in TMD diagnosis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72473/1/j.1365-2842.1999.00372.x.pd

    Classification of temporomandibular joint sounds based upon their reduced interference distribution

    Full text link
    Temporomandibular joint (TMJ) sounds were recorded in 98 orthodontic retention patients, mean age 19 ± 8–6 (s.d.) years, by interview, auscultation and electronic recording. Sounds were found by auscultation in 41% and by interview in 32% of the subjects, more often in females than in males (P ≤ 0.05). A new method for time-frequency analysis, the reduced interference distribution (RID), was used to classify the electronic sound recordings into five subclasses, RID types 1–5, based upon location and number of their energy peaks. RID types 1–3 had a few energy peaks close in time. RID types 4–5, typical of subjects with crepitation, had multiple energy peaks occurring close in time for a period of 20–300 ms. RID type 1, found in 45% of the subjects, typical of patients with clicking, had its dominant energy peak located in a frequency range ≤600 Hz and was significantly more common in the female than in the male subjects (P≤ 0.01). RID type 2, found in 68% of the subjects, with the dominant peak in the range 600–1200 Hz, and RID type 3, found in 38% of the subjects, with the peak in the frequency range >1200 Hz, were found to have a similar gender distribution. RID type 4, found in 49% of the subjects, had the energy peaks distributed in the frequency range ≤600 Hz. RID type 5, found in 43% of the subjects, more often in females than in males (P≤ 0.05), had the peaks distributed over the whole frequency range from about 30 Hz up to about 3000 Hz. In conclusion, a more detailed classification could be made of the TMJ sounds by displaying the RIDs than by auscultation. This suggests that RID classification methods may provide a means for differentiating sounds indicating different types of pathology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74694/1/j.1365-2842.1996.tb00809.x.pd

    Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain

    No full text
    BACKGROUND Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of RhaIII, in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome. RESULTS In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a. CONCLUSIONS This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.This work was supported by grants from the Swedish Research Council and The Knut and Alice Wallenberg Foundation to GW

    A detailed picture of a protein–carbohydrate hydrogen-bonding network revealed by NMR and MD simulations

    Get PDF
    Cyanovirin-N (CV-N) is a cyanobacterial lectin with antiviral activity towards HIV and several other viruses. Here, we identify mannoside hydroxyl protons that are hydrogen bonded to the protein backbone of the CV-N domain B binding site, using NMR spectroscopy. For the two carbohydrate ligands Manα(1→2)ManαOMe and Manα(1→2) Manα(1→6)ManαOMe five hydroxyl protons are involved in hydrogen-bonding networks. Comparison with previous crystallographic results revealed that four of these hydroxyl protons donate hydrogen bonds to protein backbone carbonyl oxygens in solution and in the crystal. Hydrogen bonds were not detected between the side chains of Glu41 and Arg76 with sugar hydroxyls, as previously proposed for CV-N binding of mannosides. Molecular dynamics simulations of the CV-N/Manα(1→2)Manα(1→6)ManαOMe complex confirmed the NMR-determined hydrogen-bonding network. Detailed characterization of CV-N/mannoside complexes provides a better understanding of lectin-carbohydrate interactions and opens up to the use of CV-N and similar lectins as antiviral agents

    Solution structure of Mannobioses unravelled by means of Raman optical activity

    Get PDF
    Structural analysis of carbohydrates is a complicated endeavour, due to the complexity and diversity of the samples at hand. Herein, we apply a combined computational and experimental approach, employing molecular dynamics (MD) and density functional theory (DFT) calculations together with NMR and Raman optical activity (ROA) measurements, in the structural study of three mannobiose disaccharides, consisting of two mannoses with varying glycosidic linkages. The disaccharide structures make up the scaffold of high mannose glycans and are therefore important targets for structural analysis. Based on the MD population analysis and NMR, the major conformers of each mannobiose were identified and used as input for DFT analysis. By systematically varying the solvent models used to describe water interacting with the molecules and applying overlap integral analysis to the resulting calculational ROA spectra, we found that a full quantum mechanical/molecular mechanical approach is required for an optimal calculation of the ROA parameters. Subsequent normal mode analysis of the predicted vibrational modes was attempted in order to identify possible marker bands for glycosidic linkages. However, the normal mode vibrations of the mannobioses are completely delocalised, presumably due to conformational flexibility in these compounds, rendering the identification of isolated marker bands unfeasible

    Ethyl 3,6-di-O-benzyl-2-de­oxy-N-phthalimido-1-thio-β-d-glucopyran­oside

    Get PDF
    In the title compound, C30H31NO6S, the plane of the N-phthalimido group is nearly orthogonal to the least-squares plane of the sugar ring (defined by atoms C2, C3, C5 and O5 using standard glucose nomenclature), making a dihedral angle of 72.8 (1)°. The thio­ethyl group has the exo-anomeric conformation. The hy­droxy group forms an inter­molecular hydrogen bond to the O atom in the sugar ring, generating [100] chains. There are four close π–π contacts with centroid–centroid distances less than 4.0 Å, all with dihedral angles between the inter­acting π systems of only ≃ 8°, supporting energetically favourable stacking inter­actions
    • …
    corecore