14 research outputs found
Formation of Relativistic Axion Stars
Axions and axion-like particles are compelling candidates for the missing
dark matter of the universe. As they undergo gravitational collapse, they can
form compact objects such as axion stars or even black holes. In this paper, we
study the formation and distribution of such objects. First, we simulate the
formation of compact axion stars using numerical relativity with aspherical
initial conditions that could represent the final stages of axion dark matter
structure formation. We show that the final states of such collapse closely
follow the known relationship of initial mass and axion decay constant .
Second, we demonstrate with a toy model how this information can be used to
scan a model density field to predict the number densities and masses of such
compact objects. In addition to being detectable by the LIGO/VIRGO
gravitational wave interferometer network for axion mass of eV, we show using peak statistics that for , there
exists a "mass gap" between the masses of axion stars and black holes formed
from collapse
GRChombo: An adaptable numerical relativity code for fundamental physics
GRChombo is an open-source code for performing Numerical Relativity time
evolutions, built on top of the publicly available Chombo software for the
solution of PDEs. Whilst GRChombo uses standard techniques in NR, it focusses
on applications in theoretical physics where adaptability, both in terms of
grid structure, and in terms of code modification, are key drivers
Impact of Nutrition and Salinity Changes on Biological Performances of Green and White Sturgeon
Green and white sturgeon are species of high conservational and economic interest, particularly in the San Francisco Bay Delta (SFBD) for which significant climate change-derived alterations in salinity and nutritional patterns are forecasted. Although there is paucity of information, it is critical to test the network of biological responses underlying the capacity of animals to tolerate current environmental changes. Through nutrition and salinity challenges, climate change will likely have more physiological effect on young sturgeon stages, which in turn may affect growth performance. In this study, the two species were challenged in a multiple-factor experimental setting, first to levels of feeding rate, and then to salinity levels for different time periods. Data analysis included generalized additive models to select predictors of growth performance (measured by condition factor) among the environmental stressors considered and a suite of physiological variables. Using structural equation modeling, a path diagram is proposed to quantify the main linkages among nutrition status, salinity, osmoregulation variables, and growth performances. Three major trends were anticipated for the growth performance of green and white sturgeon in the juvenile stage in the SFBD: (i) a decrease in prey abundance will be highly detrimental for the growth of both species; (ii) an acute increase in salinity within the limits studied can be tolerated by both species but possibly the energy spent in osmoregulation may affect green sturgeon growth within the time window assessed; (iii) the mechanism of synergistic effects of nutrition and salinity changes will be more complex in green sturgeon, with condition factor responding nonlinearly to interactions of salinity and nutrition status or time of salinity exposure. Green sturgeon merits special scientific attention and conservation effort to offset the effects of feed restriction and salinity as key environmental stressors in the SFBD