470 research outputs found

    Upper critical field pecularities of superconducting YNi2B2C and LuNi2B2C

    Full text link
    We present new upper critical field Hc2(T) data in a broad temperature region from 0.3K to Tc for LuNi2B2C and YNi2B2C single crystals with well characterized low impurity scattering rates. The absolute values for all T, in particular Hc2(0), and the sizeable positive curvature (PC) of Hc2(T) at high and intermediate T are explained quantitatively within an effective two-band model. The failure of the isotropic single band approach is discussed in detail. Supported by de Haas van Alphen data, the superconductivity reveals direct insight into details of the electronic structure. The observed maximal PC near Tc gives strong evidence for clean limit type II superconductors.Comment: 4 pages, 2 figures, Phys. Rev. Lett. accepte

    Infrared and optical properties of pure and cobalt-doped LuNi_2B_2C

    Full text link
    We present optical conductivity data for Lu(Ni1x_{1-x}Cox_x)2_2B2_2C over a wide range of frequencies and temperatures for x=0 and x=0.09. Both materials show evidence of being good Drude metals with the infrared data in reasonable agreement with dc resistivity measurements at low frequencies. An absorption threshold is seen at approximately 700 cm-1. In the cobalt-doped material we see a superconducting gap in the conductivity spectrum with an absorption onset at 24 +/- 2 cm-1 = 3.9$ +/- 0.4 k_BT_c suggestive of weak to moderately strong coupling. The pure material is in the clean limit and no gap can be seen. We discuss the data in terms of the electron-phonon interaction and find that it can be fit below 600 cm-1 with a plasma frequency of 3.3 eV and an electron-phonon coupling constant lambda_{tr}=0.33 using an alpha^{2}F(omega) spectrum fit to the resistivity.Comment: 10 pages with 10 embedded figures, submitted to PR

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    NUMERIČKO INTEGRIRANJE KOD IZRAČUNA VOLUMENA NEPRAVILNIH ANTIKLINALA

    Get PDF
    The volume of geological structures is often calculated by using the definite integral. Though in some cases the integral can be solved analytically, in practice we usually approximate its value by numerical integration techniques. The application of definite integral in volume calculation is illustrated by two examples. The volume of Mount Fuji, the world-known “conic” geomorphological structure, is calculated by analytical integration. Two basic numerical integration methods, that is, the trapezoidal and Simpson’s rule are applied to subsurface hydrocarbon reservoir volume calculation, where irregular anticline is approximated by a frustum of a right circular cone.Pri izračunavanju volumena geoloških struktura često se koristi određeni integral. Iako se u nekim slučajevima integral može riješiti analitički, u praksi se njegova vrijednost obično procjenjuje koristeći tehnike numeričke integracije. Primjena određenog integrala u izračunavanju volumena ilustrirana je dvama primjerima. Volumen planine Fuji, koja je svjetski poznati geomorfološki primjer “stožaste” strukture, izračunat je analitičkom integracijom. Dvije temeljne metode numeričkog integriranja, tj. trapezno i Simpsonovo pravilo, primijenjene su na izračun volumena ležišta ugljikovodika, gdje je struktura nepravilne antiklinale aproksimirana pravilnim krnjim stošcem

    Anomalously large oxygen-ordering contribution to the thermal expansion of untwinned YBa2Cu3O6.95 single crystals: a glass-like transition near room temperature

    Full text link
    We present high-resolution capacitance dilatometry studies from 5 - 500 K of untwinned YBa2Cu3Ox (Y123) single crystals for x ~ 6.95 and x = 7.0. Large contributions to the thermal expansivities due to O-ordering are found for x ~ 6.95, which disappear below a kinetic glass-like transition near room temperature. The kinetics at this glass transition is governed by an energy barrier of 0.98 +- 0.07 eV, in very good agreement with other O-ordering studies. Using thermodynamic arguments, we show that O-ordering in the Y123 system is particularly sensitive to uniaxial pressure (stress) along the chain axis and that the lack of well-ordered chains in Nd123 and La123 is most likely a consequence of a chemical-pressure effect.Comment: 4 pages, 3 figures, submitted to PR

    Soil aggregates as massively concurrent evolutionary incubators

    Get PDF
    Soil aggregation, a key component of soil structure, has mostly been examined from the perspective of soil management and the mediation of ecosystem processes such as soil carbon storage. However, soil aggregation is also a major factor to consider in terms of the fine-scale organization of the soil microbiome. For example, the physico-chemical conditions inside of aggregates usually differ from the conditions prevalent in the bulk soil and aggregates therefore increase the spatial heterogeneity of the soil. In addition, aggregates can provide a refuge for microbes against predation since their interior is not accessible to many predators. Soil aggregates are thus clearly important for microbial community ecology in soils (for example, Vos et al., 2013; Rillig et al., 2016) and for microbially driven biogeochemistry, and soil microbial ecologists are increasingly appreciating these aspects of soil aggregation. Soil aggregates have, however, so far been neglected when it comes to evolutionary considerations (Crawford et al., 2005) and we here propose that the process of soil aggregation should be considered as an important driver of evolution in the soil microbial community

    Inverse bifurcation analysis: application to simple gene systems

    Get PDF
    BACKGROUND: Bifurcation analysis has proven to be a powerful method for understanding the qualitative behavior of gene regulatory networks. In addition to the more traditional forward problem of determining the mapping from parameter space to the space of model behavior, the inverse problem of determining model parameters to result in certain desired properties of the bifurcation diagram provides an attractive methodology for addressing important biological problems. These include understanding how the robustness of qualitative behavior arises from system design as well as providing a way to engineer biological networks with qualitative properties. RESULTS: We demonstrate that certain inverse bifurcation problems of biological interest may be cast as optimization problems involving minimal distances of reference parameter sets to bifurcation manifolds. This formulation allows for an iterative solution procedure based on performing a sequence of eigen-system computations and one-parameter continuations of solutions, the latter being a standard capability in existing numerical bifurcation software. As applications of the proposed method, we show that the problem of maximizing regions of a given qualitative behavior as well as the reverse engineering of bistable gene switches can be modelled and efficiently solved
    corecore