20 research outputs found

    Proteomics Analyses of the Opportunistic Pathogen Burkholderia vietnamiensis Using Protein Fractionations and Mass Spectrometry

    Get PDF
    The main objectives of this work were to obtain a more extensive coverage of the Burkholderia vietnamiensis proteome than previously reported and to identify virulence factors using tandem mass spectrometry. The proteome of B. vietnamiensis was precipitated into four fractions to as extracellular, intracellular, cell surface and cell wall proteins. Two different approaches were used to analyze the proteins. The first was a gel-based method where 1D SDS-PAGE was used for separation of the proteins prior to reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS). The second method used MudPIT analysis (Multi dimensional Protein Identification Technique), where proteins are digested and separated using cation exchange and reversed phase separations before the MS/MS analysis (LC/LC-MS/MS). Overall, gel-based LC-MS/MS analysis resulted in more protein identifications than the MudPIT analysis. Combination of the results lead to identification of more than 1200 proteins, approximately 16% of the proteins coded from the annotated genome of Burkholderia species. Several virulence factors were detected including flagellin, porin, peroxiredoxin and zinc proteases

    Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts

    Get PDF
    BACKGROUND: Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. RESULTS: Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. CONCLUSIONS: The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis

    Identification of Residual Blood Proteins in Ticks by Mass Spectrometry Proteomics

    Get PDF
    Mass spectrometry–based proteomics of individual ticks demonstrated persistence of mammalian host blood components, including α- and β-globin chains, histones, and mitochondrial enzymes, in Ixodes scapularis and Amblyomma americanum ticks for months after molting. Residual host proteins may identify sources of infection for ticks

    Identification of Residual Blood Proteins in Ticks by Mass Spectrometry Proteomics

    Get PDF
    Mass spectrometry–based proteomics of individual ticks demonstrated persistence of mammalian host blood components, including α- and β-globin chains, histones, and mitochondrial enzymes, in Ixodes scapularis and Amblyomma americanum ticks for months after molting. Residual host proteins may identify sources of infection for ticks

    One-Hour Screening of Adulterated Heparin by Simplified Peroxide Digestion and Fast RPIP-LC-MS<sup>2</sup>

    No full text
    Early detection of potential contaminants in heparin, an extensively used anticoagulant in drug formulations and medical devices, is critical to ensuring public health. In response to heparin adulteration by oversulfated chondroitin sulfates (OSCS) that was associated with adverse events including deaths in 2007–2008, many methods have been developed to detect OSCS in heparin. However, an analytical challenge for quality screenings has been to speed up these measurements to address the complex distribution scheme of heparin in today’s global market. Here an approach based on mass spectrometry is described that enables the measurement of adulterated heparin in 1 h, significantly shortening the time frame of screening for potential contaminants. The methodology is based on simplified peroxide digestion that rapidly depolymerizes large polysaccharide chains to small oligosaccharides followed by fast liquid chromatography mass spectrometry to determine sample purity. We find that rapid peroxide digestion generates abundant C- and Y-type oligosaccharides that can be used to differentiate parent glycosaminoglycans via unsupervised multivariate analysis, including heparin, chondroitin sulfate A, dermatan sulfate, and the infamous OSCS. With quantitation demonstrated at 1% (w/w), or 50 ng, OSCS in heparin and the lower limit of detection estimated at ∼0.20% (w/w), or ∼10 ng, OSCS in heparin, the technology was sufficiently sensitive to differentiate real-life, “authentic” adulterated heparin samples and to quantify this contaminant with an error <10% relative standard deviation. The methodologies presented here are deliberately simple to foster adoption and increase the analytical throughput of mass spectrometric screening in the routine quality assessment of heparin and other types of compounds of this molecular family

    Assessment of global proteome in LNCaP cells by 2D-RP/RP LC–MS/MS following sulforaphane exposure

    Get PDF
    The phytochemical sulforaphane can induce cell cycle arrest and apoptosis in metastatic prostate cancer cells, though the mechanism of action is not fully known. We conducted a global proteome analysis in LNCaP metastatic prostate cancer cells to characterize how global protein signature responds to sulforaphane. We conducted parallel analyses to evaluate semi-quantitative 1-dimensional versus 2-dimensional liquid chromatography tandem mass spectrometry (LC–MS/MS) and their utility in characterizing whole cell lysate. We show that 2-dimensional LC–MS/MS can be a useful tool for characterizing global protein profiles and identify TRIAP1 as a novel regulator of cell proliferation in LNCaP metastatic prostate cancer cells. Keywords: Prostate cancer, Sulforaphane, Mass spectrometr
    corecore