2,617 research outputs found

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications

    Get PDF
    High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell

    Stability of a Nonequilibrium Interface in a Driven Phase Segregating System

    Full text link
    We investigate the dynamics of a nonequilibrium interface between coexisting phases in a system described by a Cahn-Hilliard equation with an additional driving term. By means of a matched asymptotic expansion we derive equations for the interface motion. A linear stability analysis of these equations results in a condition for the stability of a flat interface. We find that the stability properties of a flat interface depend on the structure of the driving term in the original equation.Comment: 14 pages Latex, 1 postscript-figur

    MCMC Exploration of Supermassive Black Hole Binary Inspirals

    Get PDF
    The Laser Interferometer Space Antenna will be able to detect the inspiral and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the Universe. Standard matched filtering techniques can be used to detect and characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally suited to this and other LISA data analysis problems as they are able to efficiently handle models with large dimensions. Here we compare the posterior parameter distributions derived by an MCMC algorithm with the distributions predicted by the Fisher information matrix. We find excellent agreement for the extrinsic parameters, while the Fisher matrix slightly overestimates errors in the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5 figures, Published Versio

    Perturbation Expansion in Phase-Ordering Kinetics: II. N-vector Model

    Full text link
    The perturbation theory expansion presented earlier to describe the phase-ordering kinetics in the case of a nonconserved scalar order parameter is generalized to the case of the nn-vector model. At lowest order in this expansion, as in the scalar case, one obtains the theory due to Ohta, Jasnow and Kawasaki (OJK). The second-order corrections for the nonequilibrium exponents are worked out explicitly in dd dimensions and as a function of the number of components nn of the order parameter. In the formulation developed here the corrections to the OJK results are found to go to zero in the large nn and dd limits. Indeed, the large-dd convergence is exponential.Comment: 20 pages, no figure

    Structural Change in (Economic) Time Series

    Get PDF
    Methods for detecting structural changes, or change points, in time series data are widely used in many fields of science and engineering. This chapter sketches some basic methods for the analysis of structural changes in time series data. The exposition is confined to retrospective methods for univariate time series. Several recent methods for dating structural changes are compared using a time series of oil prices spanning more than 60 years. The methods broadly agree for the first part of the series up to the mid-1980s, for which changes are associated with major historical events, but provide somewhat different solutions thereafter, reflecting a gradual increase in oil prices that is not well described by a step function. As a further illustration, 1990s data on the volatility of the Hang Seng stock market index are reanalyzed.Comment: 12 pages, 6 figure

    Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA

    Full text link
    A binary compact object early in its inspiral phase will be picked up by its nearly monochromatic gravitational radiation by LISA. But even this innocuous appearing candidate poses interesting detection challenges. The data that will be scanned for such sources will be a set of three functions of LISA's twelve data streams obtained through time-delay interferometry, which is necessary to cancel the noise contributions from laser-frequency fluctuations and optical-bench motions to these data streams. We call these three functions pseudo-detectors. The sensitivity of any pseudo-detector to a given sky position is a function of LISA's orbital position. Moreover, at a given point in LISA's orbit, each pseudo-detector has a different sensitivity to the same sky position. In this work, we obtain the optimal statistic for detecting gravitational wave signals, such as from compact binaries early in their inspiral stage, in LISA data. We also present how the sensitivity of LISA, defined by this optimal statistic, varies as a function of sky position and LISA's orbital location. Finally, we show how a real-time search for inspiral signals can be implemented on the LISA data by constructing a bank of templates in the sky positions.Comment: 22 pages, 15 eps figures, Latex, uses iopart style/class files. Based on talk given at the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, USA, December 17-20, 2003. Accepted for publication in Class. Quant. Gra

    Extracting galactic binary signals from the first round of Mock LISA Data Challenges

    Full text link
    We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which has been optimized to search for tens of thousands of overlapping signals across the LISA band. The BAM algorithm employs Bayesian model selection to determine the number of resolvable sources, and provides posterior distribution functions for all the model parameters. The BAM algorithm performed almost flawlessly on all the Round 1 Mock LISA Data Challenge data sets, including those with many highly overlapping sources. The only misses were later traced to a coding error that affected high frequency sources. In addition to the BAM algorithm we also successfully tested a Genetic Algorithm (GA), but only on data sets with isolated signals as the GA has yet to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin, Dec. '06
    • …
    corecore