6 research outputs found

    Early Cenozoic Fluvial Deposits of the Renova Formation in SW Montana: Links to Southern Nevada and Utah?

    Get PDF
    Examination of the early Cenozoic fluvial deposits of the Renova Formation provides support for the hypothesis that a southern branch of the pre-ice age Bell River of Canada, a river thought to have been the size of the Amazon, may have originated in the southern Colorado Plateau and flowed northward through Nevada, Utah, Idaho, and Montana. The Renova Formation mostly comprises fluvially-reworked and degraded volcanic ash. Radiometric ages of zircon grains from the Renova Formation, reported in the literature, correlate with the ages of zircons from ash-flow tuffs that erupted from mega-calderas in southern Nevada and Utah. There are also older zircons present in the Renova deposits which indicate recycling of zircon grains from Precambrian and Cambrian quartzites of Utah. These results provide evidence of river transport of ash and sand from Nevada and Utah into Montana. Previous research has been reviewed and assessed in the context of the Bell River hypothesis. A field trip was taken to physically observe the composition and depositional features of the Renova. Histograms generated by mass spectroscopy of Renova Formation zircon have been re-analyzed in light of the mega-caldera origin hypothesis. This new model suggests that a major, north-flowing Cenozoic drainage system was present in the western interior of North America before being segmented and destroyed by faulting and volcanism

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    The<em> Arabidopsis lyrata</em> genome sequence and the basis of rapid genome size change.

    No full text
    We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3x dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis

    The sampling precision of research in five major areas of psychology

    No full text
    corecore