3,030 research outputs found
Combustion products generating and metering device
Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters
Combustion products generating and metering device
An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture
Analysis of SPDEs Arising in Path Sampling Part I: The Gaussian Case
In many applications it is important to be able to sample paths of SDEs
conditional on observations of various kinds. This paper studies SPDEs which
solve such sampling problems. The SPDE may be viewed as an infinite dimensional
analogue of the Langevin SDE used in finite dimensional sampling. Here the
theory is developed for conditioned Gaussian processes for which the resulting
SPDE is linear. Applications include the Kalman-Bucy filter/smoother. A
companion paper studies the nonlinear case, building on the linear analysis
provided here
Recommended from our members
Design strategies for low embodied energy and greenhouse gases in buildings: analyses of the IEA Annex 57 case studies
This paper introduces the IEA Annex 57 case study method, consisting of a format for describing individual case studies and an evaluation matrix covering all case studies. Sample case studies are used to illustrate the method and the evaluation matrix through a first preliminary analysis. In compiling and evaluation existing, transparent case studies we have taken a stakeholder perspective. By so doing it is intended to identify fordecision makers the key issues affecting EE/EC in buildings. Analysis in this paper focuses on one of the six case study themes, building design strategies for EE/EC mitigation and references cases covering e.g. material selection, building shape, construction stage strategies and strategies to handle the trade-off between embodied and operational impacts in net-zero emission building design
Ion counting efficiencies at the IGISOL facility
At the IGISOL-JYFLTRAP facility, fission mass yields can be studied at high
precision. Fission fragments from a U target are passing through a Ni foil and
entering a gas filled chamber. The collected fragments are guided through a
mass separator to a Penning trap where their masses are identified. This
simulation work focuses on how different fission fragment properties (mass,
charge and energy) affect the stopping efficiency in the gas cell. In addition,
different experimental parameters are varied (e. g. U and Ni thickness and He
gas pressure) to study their impact on the stopping efficiency. The simulations
were performed using the Geant4 package and the SRIM code. The main results
suggest a small variation in the stopping efficiency as a function of mass,
charge and kinetic energy. It is predicted that heavy fragments are stopped
about 9% less efficiently than the light fragments. However it was found that
the properties of the U, Ni and the He gas influences this behavior. Hence it
could be possible to optimize the efficiency.Comment: 52 pages, 44 figure
How to define (net) zero greenhouse gas emissions buildings: The results of an international survey as part of IEA EBC annex 72
The concept of (net) zero greenhouse gas (GHG) emission(s) buildings is gaining wide international attention and is considered to be the main pathway for achieving climate neutrality targets in the built environment. However, there is an increasing plethora of differing terms, definitions, and approaches emerging worldwide. To understand the current progress of the ongoing discussion, this study provides an overview of terms, definitions, and key features from a review of 35 building assessment approaches. The investigation identified that 13 voluntary frameworks from 11 countries are particularly characterised by net zero-carbon/GHG emissions performance targets, which are then subject to a more detailed analysis. The review was organised in the context of the project IEA EBC Annex 72 on “Assessing Life Cycle Related Environmental Impacts Caused by Buildings”, which involves researchers from over 25 countries worldwide.
In the current dynamic political surroundings and ongoing scientific debate, only an initial overview of this topic can be presented. However, providing typologies and fostering transparency would be instrumental in delivering clarity, limiting misunderstanding, and avoiding potential greenwashing. To this end, this article categorises the most critical methodological options—i.e., system boundaries for both operational and embodied GHG emissions, the type of GHG emission factor for electricity use, the approach to the “time” aspect, and the possibilities of GHG emission compensation—into a comprehensive framework for clarifying or setting (net) zero GHG emission building definitions in a more systematic way.
The article concludes that although variations in the existing approaches will continue to exist, certain minimum directions should be considered for the future development of harmonised (net) zero GHG emissions building frameworks. As a minimum, it is recommended to extend the usual scope of the operational energy use balance. At the same time, minimum requirements must also be set for embodied GHG emissions even if they are not considered in the carbon/GHG emissions balance
Application of a novel prioritisation strategy using non-target screening for evaluation of temporal trends (1969-2017) of contaminants of emerging concern (CECs) in archived lynx muscle tissue samples
Most environmental monitoring studies of contaminants of emerging concern (CECs) focus on aquatic species and target specific classes of CECs. Even with wide-scope target screening methods, relevant CECs may be missed. In this study, non-target screening (NTS) was used for tentative identification of potential CECs in muscle tissue of the terrestrial top predator Eurasian lynx (Lynx lynx). Temporal trend analysis was applied as a prioritisation tool for archived samples, using univariate statistical tests (Mann-Kendall and Spearman rank). Pooled lynx muscle tissue collected from 1969 to 2017 was analysed with an eight-point time series using a previously validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 12,941 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 104 and 61 features with statistically significant increasing and decreasing trends, respectively. Following probable molecular formula assignment and elucidation with MetFrag, two compounds with increasing trends, and one with a decreasing trend, were tentatively identified. These results show that, despite low expected concentration levels and high matrix effects in terrestrial species, it is possible to prioritise CECs in archived lynx samples using NTS and univariate statistical approaches
Miniature micromachined quadrupole mass spectrometer array and method of making the same
The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device
Accuracy assessment of ISI-MIP modelled flows in the Hidukush-Karakoram-Himalayan basins
Large Asian rivers heading in the Hindukush-Karakoram-Himalayan mountains, and whose streamflow includes significant snow-melt and glacier-melt components, may be highly susceptible to climate warming and pattern changes. Millions of people depend on these streamflows for agriculture and power generation. Reliable predictions of future water availability are therefore needed for planning under a changing climate, and depend on the quality of hydro-climatic modelling. ISI-MIP provides global hydrological modelling results, and need validation at regional scale. This study evaluates the accuracy of modelled flows from the hydrological models used in ISI-MIP, in various sub-basins of the Upper Indus Basin (UIB) and for the reference period 1985-1998. The modelled flows are based on six hydrological models, which are: i) H08, ii) VIC, iii) WaterGAP, iv) WBM, v) MPI-HM, vi) PCR-GLOBWB. Of these models, H08 and VIC are energy-based hydrological models, while the others are temperature-based hydrological models. WBM and MPI are not suitable for the UIB, due to significant under-estimation (by 70-90%) of measured flows by their modelled flows. The remaining four models provide consistent, but still significantly under-estimated flows (up to 60% of measured flows) in all sub-basins, except the Kharmong basin. Monthly differences between modelled and measured flows vary between sub-basins, but with noticeable over-estimation in winter-spring months and under-estimation during summer months. Accuracy of the bias-corrected precipitation data sets (based on five GCMs) used in the ISI-MIP hydrological models has been assessed, using a basin-wide water balance assessment method. This method shows that all precipitation data sets significantly under-estimate precipitation in the UIB, particularly in the Karakoram sub-basins. The selected ISI-MIP hydrological models have used precipitation data which are under-estimates, which may be a main reason
for under-estimated flows. ISI-MIP hydrological modelling needs to use the best available precipitation data for the UIB, but other input data and calibration parameters also need revision. An important message from this study is that caution must be exercised in selecting precipitation data sets and hydrological models in alpine regions such as the Hindukush-Karakoram-Himalayas
- …