64 research outputs found

    Large deformation analysis using a quasi-static material point method.

    Get PDF
    The Finite Element Method (FEM) has become the standard tool for the analysis of a wide range of solid mechanics problems. However, the underlying structure of a classical updated Lagrangian FEM is not well suited for the treatment of large deformation problems, since excessive mesh distortions can lead to numerical difficulties. The Material Point Method (MPM) represents an approach in which material points moving through a fixed finite element grid are used to simulate large deformations. As the method makes use of moving material points, it can also be classifed as a point-based or meshless method. With no mesh distortions, it is an ideal tool for the analysis of large deformation problems. MPM has its origin in fluid mechanics and has only recently been applied to solid mechanics problems. It has been used successfully for impact analyses where bodies penetrate each other and for silo discharging problems. All existing MPM codes found in literature are dynamic codes with explicit time integration and only recently implicit time integration. In this study a quasi-static MPM formulation and implementation are presented. The paper starts with the description of the quasi-static governing equations and the numerical discretisation. Afterwards, the calculation process of the quasi-static MPM is explained, followed by the presentation of some geotechnical boundary value problems which have been solved with the newly developed quasi-static MPM code. The benchmark problems consist of an oedometer test and a slope. For validation, the results are compared with analytical solutions and FEM results, respectively

    A laboratory-numerical approach for modelling scale effects in dry granular slides

    Get PDF
    Granular slides are omnipresent in both natural and industrial contexts. Scale effects are changes in physical behaviour of a phenomenon at different geometric scales, such as between a laboratory experiment and a corresponding larger event observed in nature. These scale effects can be significant and can render models of small size inaccurate by underpredicting key characteristics such as ow velocity or runout distance. Although scale effects are highly relevant to granular slides due to the multiplicity of length and time scales in the flow, they are currently not well understood. A laboratory setup under Froude similarity has been developed, allowing dry granular slides to be investigated at a variety of scales, with a channel width configurable between 0.25-1.00 m. Maximum estimated grain Reynolds numbers, which quantify whether the drag force between a particle and the surrounding air act in a turbulent or viscous manner, are found in the range 102-103. A discrete element method (DEM) simulation has also been developed, validated against an axisymmetric column collapse and a granular slide experiment of Hutter and Koch (1995), before being used to model the present laboratory experiments and to examine a granular slide of significantly larger scale. This article discusses the details of this laboratory-numerical approach, with the main aim of examining scale effects related to the grain Reynolds number. Increasing dust formation with increasing scale may also exert influence on laboratory experiments. Overall, significant scale effects have been identified for characteristics such as ow velocity and runout distance in the physical experiments. While the numerical modelling shows good general agreement at the medium scale, it does not capture differences in behaviour seen at the smaller scale, highlighting the importance of physical models in capturing these scale effects

    Automating the construction of bus bays with reinforced concrete

    Get PDF
    When renovating intensively used bus bays, roads and squares, the need for their periodical closure to traffic during the period of works is inconvenient. In the case of concrete surface repairs, this timeline is additionally elongated due to the standard requirement of a 28-day curing period. The Department of Geomechanics, Civil Engineering and Geotechnics of the AGH University of Science and Technology has investigated the prototype RoadTronic robot to make slabs reinforced with a mesh of glass fibre rods. Process automation permits the application of rapid-setting CSA-based (calcium sulphoaluminate-based) cements, which achieve a compressive strength of over 20 MPa after just 1.5 h. The good properties of such cement have been confirmed by several years of use on the runway at Seattle-Tacoma Airport. Preliminary tests of the early compressive strength of Rapid Set® CSA-based concrete performed at the department, as well as calculations of guaranteed strength, indicate that young concrete can transmit operational load after just 4 h from mixing with water. The investigated solution assures a complete slab following one passage of the robot. This would permit the removal of the existing layer during reduced vehicle traffic, e.g., between 06:00 and 22:00, and the execution of a new abrasive concrete layer by 02:00, so as to restore regular traffic at 06:00

    Defects in results of calculations due to failure to take account of building conditions

    No full text
    Nieuwzględnienie ograniczeń wykonawstwa przy stosowaniu typowych modeli teoretycznych o odmiennych założeniach brzegowych i ciągłym funkcjonowaniu systemów obsługi wiąże się z poważnymi błędami wyników obliczeń. Analiza poziomu błędów przy modelowaniu bezmagazynowej pracy na budowie z pominięciem przerw i ograniczonego czasu trwania zmiany roboczej wskazuje na konieczność prawidłowych odwzorowań warunków realizacji robót.Failure to take account of working limitations when applying typical theoretical models which assume different boundary conditions and the constant functioning of service systems leads to serious detects in the results of calculations. Analysis of the level of errors in the modelling of work on a building site without stores, when account is not taken of breaks in work and the limited duration of a working shift, indicates that there is a need to properly reflect the conditions in which works are carried out

    Zamrażanie gruntu i betonowanie w obniżonych temperaturach

    No full text
    Zamrażanie z wytworzeniem płaszcza sztucznej przegrody z występujących gruntów płynnych i skał luźnych, przy znacznych dopływach wód, stanowi skuteczne rozwiązanie w wielu przypadkach budów metra, jak też przy drążeniu głębokich szybów. Stosuje się metodę klasyczną, z wykorzystaniem agregatów chłodniczych o dużych mocach (nawet kilku MW) i solanki jako medium chłodzącego oraz tzw. metodę kriogeniczną (ze znacznie niższymi temperaturami), wykorzystującą do zamrożenia ośrodka energię skroplonych gazów, dostarczanych cysternami i okresowo przechowywanych w termoizolacyjnych zbiornikach na budowie. Wysoka wytrzymałość zamarzniętych materiałów wymaga stosowania specjalistycznego sprzętu do urabiania skał. Ujemne temperatury gruntu przy betonowaniu powodują znaczący spadek wytrzymałości betonu względem tego dojrzewającego w warunkach normowych. Metody zamrażania są skuteczne przy realizacjach robót w trudnych ośrodkach nawodnionych, ale są wysoko energochłonne i wymagają specjalistycznego wykonawstwa oraz spełnienia warunków minimalnych grubości betonowanych elementów

    A system for controlling building processes on sites functioning without storage

    No full text
    Bezmagazynowy sposób wznoszenia obiektów dotyczy głównie realizacji robót masowych na budowie, tj. ziemnych, betonowych i montażowych, a także wielu prac wykończeniowych, m.in. przy stosowaniu wielkowymiarowych elementów elewacyjnych lub przy wykonywaniu wylewek z zapraw cementowych. W takim przypadku, przy rezygnacji z magazynowania przyobiektowego nie występują nakłady na tworzenie, utrzymanie i likwidację tymczasowych składowisk oraz nie jest realizowany co najmniej jeden rozładunek i jeden załadunek każdej jednostki dostarczanego lub wywożonego materiału.Building without the use of material stores is a method that applies mainly to large-scale works on a building site, namely earth works, concreting and assembly work, as well as many types of finishing work, including with the use of large elevation elements or the pouring of cement mortars. In such a case, when onsite storage is not used, the costs of creating, maintaining and liquidating temporary stockpiles are avoided, and there is a saving of at least one unloading and one loading on every unit of material delivered or removed

    Strain of early loaded young concrete on fastsetting CSA cement

    No full text
    Cement CSA jest spoiwem mineralnym, hydraulicznym, o szybkim narastaniu wytrzymałości wczesnej, małym skurczu i wysokiej odporności na siarczany. Po zarobieniu cementu CSA wodą następuje szybka reakcja pomiędzy siarczanoglinianem wapnia, gipsem i wodorotlenkiem wapnia, z dynamicznym wydzielaniem ciepła i intensywnym powstawaniem ettringitu, minerału pozwalającego osiągnąć dużą wytrzymałość wczesną. Szybkie uzyskanie wysokich wytrzymałości na ściskanie betonu na cemencie CSA (wynoszących kilkanaście MPa, po 1 godzinie od chwili dodania wody) umożliwia wczesne obciążenie wykonanych elementów. Stąd przedmiotem wstępnych badań było określenie wielkości odkształceń powstających w młodym betonie, przy działającym obciążeniu, już po 1,5h oraz 2h od chwili zarobienia składników wodą. W kontekście wyników obliczeń wg Eurokodu stwierdzono, że odkształcenia próbek młodego betonu na CSA, w przypadkach obciążeń kσ ≤ 0,45, nie są większe od wyliczonych na podstawie załączonych w normie wzorów. W przypadku większych obciążeń, przy kσ > 0,5 przy obliczeniach nieliniowego pełzania, odkształcenia po pierwszym dniu przekraczają o około 50 % wartości teoretyczne, a w następnych dniach intensywnie maleją i po 5-tym dniu są mniejsze, niż obliczone wg Eurokodu 2.CSA is mineral, hydraulic, fast-setting binder of low shrinkage and high sulphate resistance. Once the CSA cement has been treated with water, a rapid reaction occurs between calcium sulphate, gypsum and calcium hydroxide, with dynamic heat generation and intensive ettringite, a mineral that achieves high early strength. Rapid growth of CSA concrete strength (several MPa, 1 hour after adding water) enables early loading of elements. Thus, the subject of preliminary research was to determine the size of deformation occurring in young concrete, with the working load, after 1.5 hours and 2 hours after the ingredients were mixed with water. In the context of the results of Eurocode 2 calculations it was found that the deformation of young concrete samples on CSA in case of loads kσ ≤ 0.45 are not higher than those calculated on the basis of the norms enclosed in the standard. For larger loads, at kσ > 0.5, for non-linear creep calculations, deformation after the first day exceeds theoretical values by about 50%, and in subsequent days it decreases. After 5 days the deformation is lower than that calculated according to Eurocode 2
    corecore