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ABSTRACT. The Finite Element Method (FEM) has become the stan-
dard tool for the analysis of a wide range of solid mechanics problems.
However, the underlying structure of a classical updated Lagrangian FEM
is not well suited for the treatment of large deformation problems, since
excessive mesh distortions can lead to numerical difficulties. The Material
Point Method (MPM) represents an approach in which material points
moving through a fixed finite element grid are used to simulate large de-
formations. As the method makes use of moving material points, it can
also be classified as a point-based or meshless method. With no mesh
distortions, it is an ideal tool for the analysis of large deformation prob-
lems. MPM has its origin in fluid mechanics and has only recently been
applied to solid mechanics problems. It has been used successfully for im-
pact analyses where bodies penetrate each other and for silo discharging
problems. All existing MPM codes found in literature are dynamic codes
with explicit time integration and only recently implicit time integra-
tion. In this study a quasi-static MPM formulation and implementation
are presented. The paper starts with the description of the quasi-static
governing equations and the numerical discretisation. Afterwards, the
calculation process of the quasi-static MPM is explained, followed by the
presentation of some geotechnical boundary value problems which have
been solved with the newly developed quasi-static MPM code. The bench-
mark problems consist of an oedometer test and a slope. For validation,
the results are compared with analytical solutions and FEM results, re-
spectively.

KEY WORDS: meshless methods, Material Point Method, large deforma-
tions.
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1. Introduction

Over the last 25 years, the Finite Element Method (FEM) has become
a standard tool for the analysis of a wide range of solid mechanics problems.
However, FEM is not well suited for the modelling of large deformation prob-
lems. When these problems are modelled with an updated Lagrangian Finite
Element Method, considerable mesh distortions occur, which require remesh-
ing. During the remeshing process all the state variables have to be mapped
from the distorted mesh to the newly defined mesh, which introduces errors
[1].

To overcome the difficulties of FEM, so-called meshless methods have
been developed, for example, the Element-Free Galerkin Method and Smoothed
Particle Hydrodynamics [2]. The Material Point Method (MPM) might be
classified as a meshless method, a particle method or an Arbitrary Lagrangian-
Eulerian (ALE) method [3].

MPM uses two discretizations of the material, one based on a compu-
tational mesh and the other based on a collection of material points or “par-
ticles”. All the properties of the continuum (material data and deformation
state) as well as the external loads are carried by the material points, while
the grid carries no permanent information. The computational grid is used
to determine incremental displacements by solving the governing equations as
with the standard finite element method. With the MPM large deformations
are modelled by moving material points through the mesh. By this approach,
MPM combines the advantages of both Eulerian and Lagrangian formulations.

The early beginnings of MPM can be traced back to the work of Harlow
[4], who studied fluid flow by material points moving through a fixed grid.
Sulsky et al. [5] later extended the approach to the modelling of solid mechanics
and called it the Material Point Method. Bardenhagen et al. [6] extended the
method further to include frictional contact between deformable solid bodies.

The potential of MPM of simulating granular flow was first recognised
by Wieckowski [7]. Several papers on MPM modelling of silo discharge were
published [3, 7, 8]. Coetzee [9] and Coetzee et al. [10] extended the method
to include a micro-polar Cosserat continuum for studying anchor pull-out and
the large deformation problem of excavator bucket filling.

Most MPM implementations developed so far are dynamic codes which
employ an explicit time integration scheme. Although it is possible to use these
programs also for the analysis of quasi-static problems, this is computationally
inefficient as explicit integration requires very small time steps and can lead
to long computation times. For these reasons, it was decided to develop a
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quasi-static MPM implementation which uses an implicit integration scheme,
thereby broadening the possibilities of large deformation analyses for complex,
large-scale geotechnical problems.

MPM is based on FEM so that many of the standard FEM routines
can be used. The MPM code presented in this paper is based on an existing
updated Lagrangian FEM code [11].

2. Quasi-static MPM formulation

In this section the field equations of quasi-static large deformation are
presented. It is followed by a description of the numerical scheme.

2.1. Field equations of quasi-static deformation
The internal static equilibrium of a continuum can be written as

0oij

(1) &

+7 =0,

J

and on the external boundary S as
(2) Ty = 045 - Ny, i7j7k:172737

where x; are Cartesian coordinates, o;; denotes the Cauchy stress tensor, ;

represents body forces and 7; denotes the boundary traction components.
Applying Galerkin’s variational principle followed by integration by

parts (Green’s theorem) yields the equilibrium equation in the weak form

Odu;
(3) /O'ij . 8—de = /'Yi . 5Uldv + /Ti . 6uZdS,
T
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where du; represents a kinematically admissible variation of displacements, i.e.
a virtual displacement.
The development of the stress state o;; can be regarded as an incre-

mental process

(4) Uij = Jzoj + AUZ‘j.

In this relation o;; represents the actual state of stress at the end of
a load step and U?j represents the previous state of stress at the beginning of
this particular load step. Equation (3) can now be written as
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So far, the final configuration for z; and V is taken as a reference
configuration. However, at the beginning of an increment, this configuration is
not known. Therefore, equation (5) is reformulated so that the variables of the
initial geometry 2 and V' of a load step are used as the reference configuration

/AEJZ- 8(511,Z v

ou;
= /’Yz‘ -oudVo + /TZ‘ - 0u;dSp — / 0] : % % dVy + Higher Order Terms,
Vo So Vo ]

where X;; is the first Piola-Kirchoff stress tensor. The increment of the first
Piola-Kirchoff stress tensor can be written as

0Au;  , OAw
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Due to the second term, this stress rate is non-symmetric. The Cauchy stress
increment Ao;; can be written as

where AO’Z‘-]]- is the Jaumann stress rate. The incremental strains Aeg;; and
rotations Aw;; are given by

1 [ 0Au;  O0Au;
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The constitutive relation between the Jaumann stress increment and
the strain increment is

(11) AUZ‘-]]- = DéjklAgkl — Jzoj . Az’fkk,

where Dy, is the elastic element stiffness matrix. The left hand side of equa-
tion (6) now becomes

(12) /D?]kl . AEM . (58ijd‘/0 + / [021 . Aung . 5uj7l- -2 Ul?;i . Asjk . (581‘]’] dVO
Vo Vo
= Right Hand Side,

where the first term is the usual (small strain) internal virtual work and the
second term contains the large deformation contribution [12].

2.2. Numerical scheme

The element mesh used within the MPM is identical to a FEM mesh.
Interpolation functions are used to interpolate nodal values to the interior of
an isoparametric element. Making use of matrix notation, the displacement
field Awu, for example, is given by

where Aw is the nodal displacement vector, NN is assembled from shape func-
tions and &, n and ¢ are the local coordinates, respectively.

The strains at any point within the finite elements are determined from
the nodal displacements Av

(14) Ag =

[t~

I~
=

-Av =B - Av,

where L contains the Cartesian differential operators and B denotes the well-
known strain interpolation matrix. -

Making use of these definitions, the equilibrium equation, given by
equation (12), now becomes

(15) [QE + éG} Av=f + Higher Order Terms,

load i internal
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where the elastic stiffness matrix is given by

(16) K* = [ B"- D pav,
Vo

and the geometric stiffness matrix is determined from the stresses ¢ at the
beginning of the load step

(17) KD = / [Lipk + ORi * Ligi = 2 Bjpk - 03; - Bigs] dVo
Vo

with Liji = Nij i and

1
(18) B, = 3 [Liji + Liji] -

The external load vector contains body forces and surface tractions

(19) froaa =1 body T f

< traction

:/f-lder/gfzdso,
Vo So

while the internal (reaction) force vector is given by

(20) i internal /ET ’ gd‘/()
Vo

Because of the higher-order terms on the right hand side, equation (15)
has to be solved iteratively as described in the following section.

In standard FEM, Gauss-Legendre integration is used to integrate the
stiffness terms over the element volume with a fixed number of integration
points. In MPM, the integration is performed over the (changing) volume €,
of the element material points.

3. MPM calculation process

In MPM, a set of material points is tracked throughout the deformation
history of a body. The full numerical solution is calculated at these material
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points. Global position, stress and strain, for example, are associated with
these material points.

The calculation process of the quasi-static MPM can be divided into
three steps:

During the Initialisation Phase, the initial values of quantities assigned
to material points are set from initial data defining the given problem. The
information carried by the material points is projected onto a background
finite element mesh where equations of equilibrium are solved in an updated
Lagrangian frame. Information from this solution is then used to update the
material points.

The solution on the mesh is called the Lagrangian Phase of the calcu-
lation. Once the material points have been updated, the mesh is reset to its
initial configuration. The movement of the mesh relative to the material points
models convection, and is called the Convective Phase of the calculation [5].

With reference to the equations given in the previous section, each of
the MPM calculation phases is described in more detail.

3.1. The Initialisation Phase

This phase starts by generating a finite element mesh. In contrast
to FEM, the mesh is not only generated where material exists, but over the
complete domain where material is expected to move.

Material points Applied force
° o o1 °

retretestet

Vi

Fixed nodes
)

Activated elements  Deactivated elements

Fig. 1. Initialisation Phase

Material points are placed inside elements to form (define) the solid
body. This is shown in Fig. 1, for the simple case of a cantilever. Elements
containing material points are called activated elements and elements contain-
ing no material points are called deactivated elements. As material points move
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through the grid, elements become activated and deactivated using a special
house-keeping algorithm. Similar to FEM, constraints are handled by fixing
nodes, i.e. zero displacements are enforced at these nodes (Fig. 1).

During the Initialisation Phase, loads are assigned to material points
which they carry throughout the deformation process. The material points are
initially evenly distributed in an element, and thus each gives the same volume.

In the 3D code presented in this paper, 6-noded wedge elements were
used with linear shape functions [11] and initially 8 material points per element,
each with a weight of w, = 1/8.

3.2. The Lagrangian Phase

With all the state variables initialised at material points during the
Initialisation Phase, the Lagrangian Phase can be executed. The result of
the Lagrangian Phase are nodal displacement increments solved through an
iterative procedure. The formulation of the iterative procedure starts with the
linearized equilibrium equation (equation (15))

E G170 _ 0
(21) [£ + £ ] Au = i load i internal’
The iterative procedure reads

k—1
load i internal’

(22) (K" + K9] 0" = f
where k = 1,2,...,n is the iteration number of the load step considered. Sub-

displacement increments (sub-increments) dv are solved and added together to
form the nodal displacement increments

(23) Av* = Z Sv'.

The initial value of f k-l for k =1 is given by

internal

< internal
v

(24) £ ot = | E'2d

with subsequent values of f e computed from

nal
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(25) 7 / BTgkav,

< internal ~
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where the stress update is given by

(26) AO’ij = Dijkl - Aey — Oij Aepr + O'?k . Awkj + U?k; - Awp;.

The number of iterations is stopped as soon as

Sa Hi load

(27) £ o = £

< internal

where « is a specified tolerance, e.g. a = 0.01.

3.3. The Convective Phase

At the end of the Lagrangian Phase, the nodal displacements Av are
known as shown in Fig. 2(b). The mesh is now reset to its initial configuration
as shown in Fig. 2(c), while the material points keep their global positions. The
house-keeping algorithm now determines which elements should be activated
and which should be deactivated.

—pd s

(a) Initialisation  (b) Lagrangian (c) Convective

Fig. 2. The MPM calculation process: Initialisation Phase, Lagrangian Phase and
Convective Phase

The material point volumes (2, are updated using

i it 1
(28) Q, =w, |J19|

|3l
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where J), is the Jacobian matrix evaluated at the material point position.
The mass of each material point, used for calculating the body forces,
is calculated by

(20) my=p- 0,

where p is the material density assigned to the material point.

4. Benchmark problems

4.1. Oedometer test

The oedometer test is a standard geotechnical laboratory test. It pro-
vides a one-dimensional deformation problem which can easily be checked for
accuracy using an analytical solution. The analytical solution for the one-
dimensional compression of an elastic material is based on the logarithmic
strain measure for large deformations [12]

(30) e =—In (L£0> ,

where €, is the logarithmic strain, Lq the initial height and L is the deformed
height of the soil sample in the oedometer. With

(31) L __ AL,
Lo L, ~©

the formula for the logarithmic strain €7, can also be written as

(32) ep=—In(1-¢),

where ¢ is the (vertical) engineering strain. For small deformations up to
€ =~ 0.1 the logarithmic strain is virtually equal to the engineering strain.
Strains above this limit are considered as large deformations.

Van Langen [12] derived the analytical solution for the Cauchy stress
o as follows: 0 = E - [e°L — 1]. For small values of e, this equation simply
reduces to 0 = F - 7. The deviation from this linear equation is caused by
the fact that Van Langen assumes a linear relation between the Kirchoff stress
YK and the logarithmic strain ey, i.e. % = E - ¢y, where F is the Young’s
modulus.
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In Figure 3 the stress-strain curve obtained from a MPM calculation of
the oedometer problem is plotted versus Van Langen’s analytical solution. In
the MPM calculation a mesh with a total of 16 6-noded wedge elements with
linear interpolation functions is used (Fig. 3). All elements are initialised with
8 material points each so that all particles represent the same material volume.
Figure 3 shows a stress-strain curve plotted in for a material point near the
centre of the specimen, which shows that MPM results agree quite well with
the analytical solution.

120.0

100.0
[—-— Analytical solution -+ MPM | /
80.0 /
40.0 /
E =100 kPa
v=20
20.0 /.A‘(
0.0 T T T T T T T ]
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
8L

o [kPa]
3
o

Fig. 3. Computed oedometer stress-strain curve (MPM) versus van Langen’s
analytical solution

4.2. Slope problem

The second benchmark problem consists of a slope with an inclination
of 45° and a height of 1 m; Figure 4 presents the geometry of the problem. The
same boundary value problem was analysed by Ernst [13] using a linear elastic
perfectly plastic model with Mohr-Coulomb failure envelope with a cohesion
of ¢ = 1 kPa, a friction angle of ¢ = 25°, a dilatancy angle ¥ = 0°, and a
Poisson’s ratio of v = 0.33. FErnst studied the slope response under gravity
loading and as computational result he plotted the unit weight of the soil ~
as a function of vertical displacement for the point located at the top of the
slope, marked as “A” in Fig. 4. As the currently developed MPM code is a
full 3D code, the plane strain problem is analysed in a 3D slice as shown in
Fig. 5. The mesh provided within the MPM Initialisation Phase (see Section
3.1) is shown on the right hand side of Fig. 5.
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Fig. 4. Slope problem: geometry and material parameters after [13]
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Fig. 5. Slope problem: 3D geometry (left) and initial configuration highlighting the
activated elements (right) in the MPM analysis

The load-displacement curves calculated with MPM are compared with
the results from updated Lagrangian FEM simulations. In Figure 6, the verti-
cal displacement u of the crest point A is multiplied by the Young’s modulus
used in the respective calculation. Calculations are carried out for Young’s
moduli of 50 kPa and 200 kPa. The resulting displacements are proportional
to 1/E, meaning that any value of Young’s modulus may be chosen, provided
that this value is used to normalize resulting displacements, as shown in Fig. 6.
For the FEM calculations, the same 15-noded wedge elements with quadratic
interpolation functions are used as in the MPM analysis. The Mohr-Coulomb
criterion serves as failure criterion for the linear elastic — perfectly plastic con-
stitutive material law used.
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Fig. 6. Load-displacement curves (Point A) for E = 50 kPa and E = 200 kPa
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Fig. 7. FEM Slopes at failure: E = 50 kPa (left) and E = 200 kPa (right)

Fig. 8. MPM Slopes, final configurations: E = 50 kPa (left) and F = 200 kPa (right)
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Both FEM and MPM analyses yield practically the same load dis-
placement curves as long as the material behaves mostly elastic. For plastic
material behaviour, the MPM and FEM load-displacement curves are slightly
different, with the MPM predicting a somewhat stiffer response than the FEM.
The MPM response can be attributed to material that makes contact with the
lower boundary beyond the slope toe. This additional support cannot be mod-
elled with the FEM in the same manner. The most striking difference between
the FEM and MPM curves is the capacity of MPM to produce physical results
up to very large deformations. FEM meshes become highly distorted when ma-
terial weights exceed v = 30 kN/m?3, and FEM results are no longer reliable.
By contrast, MPM calculations can be continued all the way until particles
reach the boundaries of the defined mesh, with material weight reaching v =
100 kN/m? or so.

To test sensitivity to mesh refinement, MPM calculations were run on
meshes of varying coarseness, shown in Fig. 9. The load-displacement curves
of the control point A, shown in Fig. 10, demonstrate that mesh refinement has
a significant impact on the calculation of this slope. Therefore, it is planned
to implement a regularization method in the future.
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Fig. 9. Meshes of increasing coarseness
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Fig. 10. High-order MPM sensitivity to mesh refinement

5. Conclusions

The development of a three-dimensional quasi-static MPM code is pre-
sented. MPM can model large deformations without the risk of numerical
instability caused by extensive mesh distortions, and without the high com-
putational costs of remeshing. The code was implemented using an existing
updated Lagrangian FEM code. Results from an oedometer test and a slope
problem are compared to an analytical model and FEM results, respectively.

It is shown that MPM can model the large deformations of an oedome-
ter. The calculated stress-strain curve is in agreement with the analytical
solution. It is also shown that MPM can model the failure of a slope. The cal-
culated load-displacement curves correspond well with the results from FEM
for the almost elastic branch of the loading process. Thereafter, MPM predicts
displacements slightly less than those obtained from FEM. This is considered
a physical result as the displaced material points may give additional support
at the slope toe. FEM capacity to model material deformation is limited by
distortions in the FEM mesh, while MPM calculations can be continued and
produce reliable results up to very large deformations.

In the current MPM, 15-noded wedge elements with second-order in-
terpolation functions are used, as this yields more accurate results than with
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6-noded elements. In this paper, the material was assumed to be linear elastic—
perfectly plastic; in the future, hardening plasticity will be added.

It is concluded that MPM is well suited for the modelling of large defor-

mation problems. Geotechnical applications such as pile driving, installation
of spudcans, and bucket foundations will be investigated in the near future.
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