711 research outputs found

    Massive star formation via high accretion rates and early disk-driven outflows

    Full text link
    We present an investigation of massive star formation that results from the gravitational collapse of massive, magnetized molecular cloud cores. We investigate this by means of highly resolved, numerical simulations of initial magnetized Bonnor-Ebert-Spheres that undergo collapse and cooling. By comparing three different cases - an isothermal collapse, a collapse with radiative cooling, and a magnetized collapse - we show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr. We confirm that the mass accretion during the collapsing phase is much more efficient than predicted by selfsimilar collapse solutions, i.e. dM/dt ~ c^3/G. We find that during protostellar assembly the mass accretion reaches 20 - 100 c^3/G. Furthermore, we determined the self-consistent structure of bipolar outflows that are produced in our three dimensional magnetized collapse simulations. These outflows produce cavities out of which radiation pressure can be released, thereby reducing the limitations on the final mass of massive stars formed by gravitational collapse. Moreover, we argue that the extraction of angular momentum by disk-threaded magnetic fields and/or by the appearance of bars with spiral arms significantly enhance the mass accretion rate, thereby helping the massive protostar to assemble more quickly.Comment: 22 pages, 12 figures, aastex style, accepted for publication in ApJ, see http://www.ita.uni-heidelberg.de/~banerjee/publications/MassiveStars.pdf for high resolution figure

    Book Reviews

    Get PDF

    Spatial-Distance Cues Influence Economic Decision-Making in a Social Context

    Get PDF
    Social distance (i.e., the degree of closeness to another person) affects the way humans perceive and respond to fairness during financial negotiations. Feeling close to someone enhances the acceptance of monetary offers. Here, we explored whether this effect also extends to the spatial domain. Specifically, using an iterated version of the Ultimatum Game in a within-subject design, we investigated whether different visual spatial distance-cues result in different rates of acceptance of otherwise identical monetary offers. Study 1 found that participants accepted significantly more offers when they were cued with spatial closeness than when they were cued with spatial distance. Study 2 replicated this effect using identical procedures but different spatial- distance cues in an independent sample. Importantly, our results could not be explained by feelings of social closeness. Our results demonstrate that mere perceptions of spatial closeness produce analogous–but independent–effects to those of social closeness

    A PPMAP analysis of the filamentary structures in Ophiuchus L1688 and L1689

    Get PDF
    We use the PPMAP (Point Process MAPping) algorithm to re-analyse the \textit{Herschel} and SCUBA-2 observations of the L1688 and L1689 sub-regions of the Ophiuchus molecular cloud. PPMAP delivers maps with high resolution (here 14â€Čâ€Č14'', corresponding to ∌0.01 pc\sim 0.01\,{\rm pc} at ∌140 pc\sim 140\,{\rm pc}), by using the observations at their native resolutions. PPMAP also delivers more accurate dust optical depths, by distinguishing dust of different types and at different temperatures. The filaments and prestellar cores almost all lie in regions with NH2≳7×1021 cm−2N_{\rm H_2}\gtrsim 7\times 10^{21}\,{\rm cm}^{-2} (corresponding to AV≳7A_{_{\rm V}}\gtrsim 7). The dust temperature, TT, tends to be correlated with the dust opacity index, ÎČ\beta, with low TT and low ÎČ\beta tend concentrated in the interiors of filaments. The one exception to this tendency is a section of filament in L1688 that falls -- in projection -- between the two B stars, S1 and HD147889; here TT and ÎČ\beta are relatively high, and there is compelling evidence that feedback from these two stars has heated and compressed the filament. Filament {\sc fwhm}s are typically in the range 0.10 pc0.10\,{\rm pc} to 0.15 pc0.15\,{\rm pc}. Most filaments have line densities in the range 25 M⊙ pc−125\,{\rm M_{_\odot}\,pc^{-1}} to 65 M⊙ pc−165\,{\rm M_{_\odot}\,pc^{-1}}. If their only support is thermal gas pressure, and the gas is at the canonical temperature of 10 K10\,{\rm K}, the filaments are highly supercritical. However, there is some evidence from ammonia observations that the gas is significantly warmer than this, and we cannot rule out the possibility of additional support from turbulence and/or magnetic fields. On the basis of their spatial distribution, we argue that most of the starless cores are likely to disperse (rather than evolving to become prestellar).Comment: 22 pages, 18 figures, Accepted for publication by MNRAS March 202

    Structure and Evolution of Hot Gas in 30 Dor

    Full text link
    We have investigated the structure and evolution of hot gas in the 30 Dor nebula, based on recent X-ray observations. Our deep ROSAT HRI image shows that diffuse X-ray emission arises in blister-shaped regions outlined by loops of HII gas. X-ray spectroscopic data from ASCA confirm the thermal nature of the emission and indicate that hot gas temperature decreases from the core to the halo of the nebula. The structure of the nebula can be understood as outflows of hot and HII gases from the parent giant molecular cloud of the central OB association. The dynamic mixing between the two gas phases is likely responsible for the mass loading to the hot gas, as required to explain the observed thermal structure and X-ray luminosity of the nebula. Such processes should also be important in the formation of similar giant HII regions and in their subsequent evolution into supergiant bubbles or galactic chimneys.Comment: 9 page text plus 4 color figures. To appear in ApJ

    Random division of an interval

    Get PDF
    The well-known relation between random division of an interval and the Poisson process is interpreted as a Laplace transformation. With the use of this interpretation a number of (in part known) results is derived very easily

    Genetic structure of Tribolium castaneum populations in mills

    Get PDF
    We investigated the genetic diversity and differentiation among nine populations of Tribolium castaneum using eight polymorphic loci, including microsatellites and other insertion-deletion polymorphisms (=”indels”). Samples were collected in food processing/storage facilities located in Kansas, Nebraska, California, Louisiana, Florida and Puerto Rico. Standard population genetic analysis was applied, and an assignment test was used to assign individuals to their genetic population. All loci were polymorphic across populations, with the number of alleles per locus-population combination varying from three to fourteen. Among 72 locus-by-population combinations, 31 deviated significantly from Hardy-Weinberg equilibrium, which was associated with a deficiency in heterozygosity. Tribolium castaneum populations show some level of genetic structuring. Genetic differentiation between populations, using FST estimates, was significant, with FST varying from 0.018 to 0.149. AMOVA indicated that 8.32% of the variation in allele frequency resulted from comparisons among populations. Genetic distance was not significantly correlated with geographic distance. Correct assignment to the genetic population was possible in only 56% of all individuals. Together, these results revealed that geographically distinct populations of T. castaneum had low to moderate levels of genetic differentiation that was not correlated with geographic distance, and the genotypic profile of the individuals did not provide enough information for fingerprinting them with their source population. Keywords: Tribolium castaneum, Population genetics, Genetic structure, FST, Genetic fingerprintin

    The HII Region KR 140: Spontaneous Formation of a High Mass Star

    Full text link
    We have used a multiwavelength data set from the Canadian Galactic Plane Survey (CGPS) to study the Galactic HII region KR 140, both on the scale of the nebula itself and in the context of the star forming activity in the nearby W3/W4/W5 complex of molecular clouds and HII regions. From both radio and infrared data we have found a covering factor of about 0.5 for KR 140 and we interpret the nebula as a bowl-shaped region viewed close to face on. Extinction measurements place the region on the near side of its parent molecular cloud. The nebula is kept ionized by one O8.5 V(e) star, VES 735, which is less than a few million years old. CO data show that VES 735 has disrupted much of the original molecular cloud for which the estimated mass and density are about 5000 M⊙M_{\odot} and 100 cm−3^{-3}, respectively. KR 140 is isolated from the nearest star forming activity, in W3. Our data suggest that KR 140 is an example of spontaneous (i.e., non-triggered) formation of, unusually, a high mass star.Comment: 46 pages; includes 15 figures; accepted by the Ap
    • 

    corecore