28 research outputs found

    Stem cell therapies for treating osteoarthritis: prescient or premature?

    Get PDF
    There has been unprecedented interest in recent years in the use of stem cells as therapy for an array of diseases in companion animals. Stem cells have already been deployed therapeutically in a number of clinical settings, in particular the use of mesenchymal stem cells to treat osteoarthritis in horses and dogs. However, an assessment of the scientific literature highlights a marked disparity between the purported benefits of stem cell therapies and their proven abilities as defined by rigorously controlled scientific studies.Although preliminary data generated from clinical trials in human patients are encouraging, therapies currently available to treat animals are supported by very limited clinical evidence, and the commercialisation of these treatments may be premature. This review introduces the three main types of stem cells relevant to veterinary applications, namely, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells, and draws together research findings from in vitro and in vivo studies to give an overview of current stem cell therapies for the treatment of osteoarthritis in animals. Recent advances in tissue engineering, which is proposed as the future direction of stem cell-based therapy for osteoarthritis, are also discussed

    Monodelphis domestica Induced Pluripotent Stem Cells Reveal Metatherian Pluripotency Architecture

    Get PDF
    Marsupials have been a powerful comparative model to understand mammalian biology. However, because of the unique characteristics of their embryology, marsupial pluripotency architecture remains to be fully understood, and nobody has succeeded in developing embryonic stem cells (ESCs) from any marsupial species. We have developed an integration-free iPSC reprogramming method and established validated iPSCs from two inbred strains of a marsupial, Monodelphis domestica. The monoiPSCs showed a significant (6181 DE-genes) and highly uniform (r2 [95% CI] = 0.973 ± 0.007) resetting of the cellular transcriptome and were similar to eutherian ESCs and iPSCs in their overall transcriptomic profiles. However, monoiPSCs showed unique regulatory architecture of the core pluripotency transcription factors and were more like marsupial epiblasts. Our results suggest that POU5F1 and the splice-variant-specific expression of POU5F3 synergistically regulate the opossum pluripotency gene network. It is plausible that POU5F1, POU5F3 splice variant XM_016427856.1, and SOX2 form a self-regulatory network. NANOG expression, however, was specific to monoiPSCs and epiblasts. Furthermore, POU5F1 was highly expressed in trophectoderm cells, whereas all other pluripotency transcription factors were significantly downregulated, suggesting that the regulatory architecture of core pluripotency genes of marsupials may be distinct from that of eutherians

    Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro

    Get PDF
    Optimization of pluripotent stem cell expansion and differentiation is facilitated by biological tools that permit non-invasive and dynamic monitoring of pluripotency, and the ability to select for an undifferentiated input cell population. Here we report on the generation and characterisation of clonal human embryonic stem (HES3, H9) and human induced pluripotent stem cell lines (UQEW01i-epifibC11) that have been stably modified with an artificial EOS(C3+) promoter driving expression of EGFP and puromycin resistance-conferring proteins. We show that EGFP expression faithfully reports on the pluripotency status of the cells in these lines and that antibiotic selection allows for an efficient elimination of differentiated cells from the cultures. We demonstrate that the extinction of the expression of the pluripotency reporter during differentiation closely correlates with the decrease in expression of conventional pluripotency markers, such as OCT4 (POU5F1), TRA-1-60 and SSEA4 when screening across conditions with various levels of pluripotency-maintaining or differentiation-inducing signals. We further illustrate the utility of these lines for real-time monitoring of pluripotency in embryoid bodies and microfluidic bioreactors. (C) 2014 The Authors. Published by Elsevier B. V

    The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials

    No full text
    Marsupials and monotremes represent evolutionarily divergent lineages from the majority of extant mammals which are eutherian, or placental, mammals. Monotremes possess multiple X and Y chromosomes that appear to have arisen independently of eutherian and marsupial sex chromosomes. Dosage compensation of X-linked genes occurs in monotremes on a gene-by-gene basis, rather than through chromosome-wide silencing, as is the case in eutherians and marsupials. Specifically, studies in the platypus have shown that for any given X-linked gene, a specific proportion of nuclei within a cell population will silence one locus, with the percentage of cells undergoing inactivation at that locus being highly gene-specific. Hence, it is perhaps not surprising that the expression level of X-linked genes in female platypus is almost double that in males. This is in contrast to the situation in marsupials where one of the two X chromosomes is inactivated in females by the long non-coding RNA RSX, a functional analogue of the eutherian XIST. However, marsupial X chromosome inactivation differs from that seen in eutherians in that it is exclusively the paternal X chromosome that is silenced. In addition, marsupials appear to have globally upregulated X-linked gene expression in both sexes, thus balancing their expression levels with those of the autosomes, a process initially proposed by Ohno in 1967 as being a fundamental component of the X chromosome dosage compensation mechanism but which may not have evolved in eutherians

    The transgenic mouse in studies of mammalian sexual differentiation.

    No full text

    Gonadal sex reversal of the developing marsupial ovary in vivo and in vitro

    No full text
    Undifferentiated tammar wallaby ovaries were transplanted under the skin of male pouch young during the period of mitotic division of the XX germ cells. After 25 days, all the germ cells had disappeared and the ovaries contained seminiferous-like cords, Similarly, undifferentiated ovaries cultured for 4 days with recombinant human Mullerian-inhibiting substance (rhMIS) also contained well-differentiated seminiferous-like cords and few or no surviving germ cells. The majority of controls cultured without rhMIS developed as normal ovaries. However, in a few control ovaries seminiferous-like cords developed in those regions of the ovaries that were partially necrotic and contained few germ cells. These results strongly suggest that sex-reversal of the tammar ovary is the direct result of loss of mitotic germ cells, rather than an effect of MIS on female somatic cells. MIS is apparently toxic to these female germ cells in mitosis, but not to male germ cells in mitosis. Thus, in normal development in the tammar, the presence of XX germ cells in the ovary inhibits the formation of seminiferous cords so that the gonad develops as an ovary

    Müllerian duct regression in a marsupial, the tammar wallaby

    No full text
    Mullerian duct regression is first apparent in male pouch young of the tammar wallaby (Macropus eugenii) 6-7 days after birth and, as in eutherian mammals, is characterised by a condensation of the periductal mesenchyme into a whorl around the ductal epithelial cells. A decrease in the density of the extracellular matrix was observed in the region of the whorl. In contrast to eutherian mammals no changes were observed in the mean outer diameter of the Mullerian duct during the early stages of regression. The time at which these mesenchymal changes occur corresponds to the period of Mullerian inhibiting substance secretion in the postnatal tammar testis

    Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts

    No full text
    Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and alpha-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers beta III-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos

    Blubber cortisol levels in humpback whales (Megaptera novaeangliae): a measure of physiological stress without effects from sampling

    No full text
    Baleen whales are vulnerable to environmental impacts due to low fecundity, capital breeding strategies, and their reliance on a large amount of prey resources over large spatial scales. There has been growing interest in monitoring health and physiological stress in these species but, to date, few measures have been validated. The purpose of this study was to examine whether blubber cortisol could be used as a measure of physiological stress in humpback whales. Cortisol concentrations were initially compared between live, presumably 'healthy' whales (n = 187) and deceased whales (n = 35), which had died after stranding or entanglement, or washed ashore as a carcass. Deceased whales were found to have significantly higher cortisol levels (mean ± SD; 5.47 ± 4.52 ng/g) than live whales (0.51 ± 0.14 ng/g; p < 0.001), particularly for those animals that had experienced prolonged trauma (e.g. stranding) prior to death. Blubber cortisol levels in live whales were then examined for evidence of life history-related, seasonal, or sampling-related effects. Life history group and sampling-related factors, such as encounter time and the number of biopsy sampling attempts per animal, were found to be poor predictors of blubber cortisol levels in live whales. In contrast, blubber cortisol levels varied seasonally, with whales migrating north towards the breeding grounds in winter having significantly higher levels (0.54 ± 0.21 ng/g, p = 0.016) than those migrating south towards the feeding grounds in spring (0.48 ± 1.23 ng/g). These differences could be due to additional socio-physiological stress experienced by whales during peaks in breeding activity. Overall, blubber cortisol appears to be a suitable measure of chronic physiological stress in humpback whales
    corecore