10 research outputs found

    Spatial and Temporal Variations in SO₂ and PM₂.₅ Levels Around Kīlauea Volcano, Hawai'i During 2007–2018

    Get PDF
    Among the hazards posed by volcanoes are the emissions of gases and particles that can affect air quality and damage agriculture and infrastructure. A recent intense episode of volcanic degassing associated with severe impacts on air quality accompanied the 2018 lower East Rift Zone (LERZ) eruption of Kīlauea volcano, Hawai'i. This resulted in a major increase in gas emission rates with respect to usual emission values for this volcano, along with a shift in the source of the dominant plume to a populated area on the lower flank of the volcano. This led to reduced air quality in downwind communities. We analyse open-access data from the permanent air quality monitoring networks operated by the Hawai'i Department of Health (HDOH) and National Park Service (NPS), and report on measurements of atmospheric sulfur dioxide (SO2) between 2007 and 2018 and PM2.5 (aerosol particulate matter with diameter <2.5 μm) between 2010 and 2018. Additional air quality data were collected through a community-operated network of low-cost PM2.5 sensors during the 2018 LERZ eruption. From 2007 to 2018 the two most significant escalations in Kīlauea's volcanic emissions were: the summit eruption that began in 2008 (Kīlauea emissions averaged 5–6 kt/day SO2 from 2008 until summit activity decreased in May 2018) and the LERZ eruption in 2018 when SO2 emission rates reached a monthly average of 200 kt/day during June. In this paper we focus on characterizing the airborne pollutants arising from the 2018 LERZ eruption and the spatial distribution and severity of volcanic air pollution events across the Island of Hawai'i. The LERZ eruption caused the most frequent and severe exceedances of the Environmental Protection Agency (EPA) PM2.5 air quality threshold (35 μg/m3 as a daily average) in Hawai'i in the period 2010–2018. In Kona, for example, the maximum 24-h-mean mass concentration of PM2.5 was recorded as 59 μg/m3 on the twenty-ninth of May 2018, which was one of eight recorded exceedances of the EPA air quality threshold during the 2018 LERZ eruption, where there had been no exceedances in the previous 8 years as measured by the HDOH and NPS networks. SO2 air pollution during the LERZ eruption was most severe in communities in the south and west of the island, as measured by selected HDOH and NPS stations in this study, with a maximum 24-h-mean mass concentration of 728 μg/m3 recorded in Ocean View (100 km west of the LERZ emission source) in May 2018. Data from the low-cost sensor network correlated well with data from the HDOH PM2.5 instruments, confirming that these low-cost sensors provide a robust means to augment reference-grade instrument networks

    Rapid metal pollutant deposition from the volcanic plume of Kīlauea, Hawai’i

    Get PDF
    AbstractLong-lived basaltic volcanic eruptions are a globally important source of environmentally reactive, volatile metal pollutant elements such as selenium, cadmium and lead. The 2018 eruption of Kīlauea, Hawai’i produced exceptionally high discharge of metal pollutants, and was an unprecedented opportunity to track them from vent to deposition. Here we show, through geochemical sampling of the plume that volatile metal pollutants were depleted in the plume up to 100 times faster than refractory species, such as magnesium and iron. We propose that this rapid wet deposition of complexes containing reactive and potentially toxic volatile metal pollutants may disproportionately impact localised areas close to the vent. We infer that the relationship between volatility and solubility is an important control on the atmospheric behaviour of elements. We suggest that assessment of hazards from volcanic emissions should account for heterogeneous plume depletion of metal pollutants.</jats:p

    Ground-Based Measurements of the 2014–2015 Holuhraun Volcanic Cloud (Iceland)

    Get PDF
    The 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios SO2/HCl = 30–110 and SO2/HF = 30–130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3–5.5 km agl were measured with ground- and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting

    Assessing the effectiveness of low-cost air quality monitors for identifying volcanic SO2 and PM downwind from Masaya volcano, Nicaragua

    No full text
    Gas and particulate matter (PM) emissions from Masaya volcano, Nicaragua, cause substantial regional volcanic air pollution (VAP). We evaluate the suitability of low-cost SO2 and PM sensors for a continuous airquality network. The network was deployed for six months in five populated areas (4-16 km from crater). The SO2 sensors failed and recorded erroneous values on multiple occasions, likely due to corrosion, requiring significant maintenance commitment. The PM sensors were found to be robust but data required correction for humidity. SO2 measurements could not be used as stand-alone tools to detect occurrence of VAP episodes (VAPE), but a SO2/PM correlation reliably achieved this at near-field stations, as confirmed by meteorological forecasts and satellite imagery. Above-background PM concentrations reliably identified VAPE at both near-field and far-field stations. We suggest that a continuous network can be built from a combination of low-cost PM and SO2 sensors with a greater number of PM-only sensors

    Spatial and temporal variations in SO2 and PM2.5 levels around Kīlauea Volcano, Hawai'i during 2007–2018

    No full text
    Among the hazards posed by volcanoes are the emissions of gases and particles that can affect air quality and damage agriculture and infrastructure. A recent intense episode of volcanic degassing associated with severe impacts on air quality accompanied the 2018 lower East Rift Zone (LERZ) eruption of Kīlauea volcano, Hawai'i. This resulted in a major increase in gas emission rates with respect to usual emission values for this volcano, along with a shift in the source of the dominant plume to a populated area on the lower flank of the volcano. This led to reduced air quality in downwind communities. We analyse open-access data from the permanent air quality monitoring networks operated by the Hawai'i Department of Health (HDOH) and National Park Service (NPS), and report on measurements of atmospheric sulfur dioxide (SO2) between 2007 and 2018 and PM2.5 (aerosol particulate matter with diameter <2.5 μm) between 2010 and 2018. Additional air quality data were collected through a community-operated network of low-cost PM2.5 sensors during the 2018 LERZ eruption. From 2007 to 2018 the two most significant escalations in Kīlauea's volcanic emissions were: the summit eruption that began in 2008 (Kīlauea emissions averaged 5–6 kt/day SO2 from 2008 until summit activity decreased in May 2018) and the LERZ eruption in 2018 when SO2 emission rates reached a monthly average of 200 kt/day during June. In this paper we focus on characterizing the airborne pollutants arising from the 2018 LERZ eruption and the spatial distribution and severity of volcanic air pollution events across the Island of Hawai'i. The LERZ eruption caused the most frequent and severe exceedances of the Environmental Protection Agency (EPA) PM2.5 air quality threshold (35 μg/m3 as a daily average) in Hawai'i in the period 2010–2018. In Kona, for example, the maximum 24-h-mean mass concentration of PM2.5 was recorded as 59 μg/m3 on the twenty-ninth of May 2018, which was one of eight recorded exceedances of the EPA air quality threshold during the 2018 LERZ eruption, where there had been no exceedances in the previous 8 years as measured by the HDOH and NPS networks. SO2 air pollution during the LERZ eruption was most severe in communities in the south and west of the island, as measured by selected HDOH and NPS stations in this study, with a maximum 24-h-mean mass concentration of 728 μg/m3 recorded in Ocean View (100 km west of the LERZ emission source) in May 2018. Data from the low-cost sensor network correlated well with data from the HDOH PM2.5 instruments, confirming that these low-cost sensors provide a robust means to augment reference-grade instrument networks

    Assessing the effectiveness of low-cost air quality monitors for identifying volcanic SO2 and PM downwind from Masaya volcano, Nicaragua

    Get PDF
    Gas and particulate matter (PM) emissions from Masaya volcano, Nicaragua, cause substantial regional volcanic air pollution (VAP). We evaluate the suitability of low-cost SO2 and PM sensors for a continuous air-quality network. The network was deployed for six months in five populated areas (4–16 km from crater). The SO2 sensors failed and recorded erroneous values on multiple occasions, likely due to corrosion, requiring significant maintenance commitment. The PM sensors were found to be robust but data required correction for humidity. SO2 measurements could not be used as stand-alone tools to detect occurrence of VAP episodes (VAPE), but an SO2/PM correlation reliably achieved this at near-field stations, as confirmed by meteorological forecasts and satellite imagery. Above-background PM concentrations reliably identified VAPE at both near-field and far-field stations. We suggest that a continuous network can be built from a combination of low-cost PM and SO2 sensors with a greater number of PM-only sensors

    Effectiveness of low-cost air quality monitors for identifying volcanic SO₂ and PM downwind from Masaya volcano, Nicaragua

    Get PDF
    Gas and particulate matter (PM) emissions from Masaya volcano, Nicaragua, cause substantial regional volcanic air pollution (VAP). We evaluate the suitability of low-cost SO2 and PM sensors for a continuous air-quality network. The network was deployed for six months in five populated areas (4-16 km from crater). The SO2 sensors failed and recorded erroneous values on multiple occasions, likely due to corrosion, requiring significant maintenance commitment. The PM sensors were found to be robust but data required correction for humidity. SO2 measurements could not be used as stand-alone tools to detect occurrence of VAP episodes (VAPE), but SO2/PM correlation reliably achieved this at near-field stations, as confirmed by meteorological forecasts and satellite imagery. Above-background PM concentrations reliably identified VAPE at both near-field and far-field stations. We suggest that a continuous network can be built from a combination of low-cost PM and SO2 sensors with a greater number of PM-only sensors
    corecore