479 research outputs found

    IMPACTS OF ENERGY COST INCREASES ON IRRIGATED LAND VALUES

    Get PDF
    Irrigation development in the Pacific Northwest expanded rapidly during the 1960s and 1970s when economic conditions, including very cheap electricity for pumping water, were favorable for this activity. Thousands of acre of land were irrigated that required lifting water 400 feet or more. The cost of energy for irrigation pumping has risen as much as 400% in recent years, and many of these high pump lift farms are in serious economic difficulty. This study shoes that farms with pump lifts exceeding 400 feet will not be able to replace capital irrigation equipment to remain in production in the long run. Land values on these farms will be determined by dryland production alternatives leaving no rents to sustain the incentive for irrigation.Land Economics/Use, Resource /Energy Economics and Policy,

    Minimum-Cost Coverage of Point Sets by Disks

    Full text link
    We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.Comment: 10 pages, 4 figures, Latex, to appear in ACM Symposium on Computational Geometry 200

    Fish schooling as a basis for vertical axis wind turbine farm design

    Get PDF
    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16x16 wind turbines. Results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.Comment: Submitted for publication in BioInspiration and Biomimetics. Note: The technology described in this paper is protected under both US and international pending patents filed by the California Institute of Technolog

    Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations

    Full text link
    Parker Solar Probe (PSP) achieved its first orbit perihelion on November 6, 2018, reaching a heliocentric distance of about 0.165 au (35.55 R_\odot). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R_\odot and 131.64 R_\odot in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP SWEAP plasma data along its trajectory between 35.55 R_\odot and 131.64 R_\odot. The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport model recently developed by Zank et al. (2017). We find reasonable agreement between the theoretical and observed results. On the basis of these comparisons, we derive other theoretical turbulent quantities, such as the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy and cross-helicity, the fluctuating magnetic energy, and the correlation lengths corresponding to forward and backward propagating modes, the residual energy, and the fluctuating magnetic energy

    Quantifying the Energy Budget in the Solar Wind from 13.3-100 Solar Radii

    Full text link
    A variety of energy sources, ranging from dynamic processes like magnetic reconnection and waves to quasi-steady terms like the plasma pressure, may contribute to the acceleration of the solar wind. We utilize a combination of charged particle and magnetic field observations from the Parker Solar Probe (PSP) to attempt to quantify the steady-state contribution of the proton pressure, the electric potential, and the wave energy to the solar wind proton acceleration observed by PSP between 13.3 and ~100 solar radii (RS). The proton pressure provides a natural kinematic driver of the outflow. The ambipolar electric potential acts to couple the electron pressure to the protons, providing another definite proton acceleration term. Fluctuations and waves, while inherently dynamic, can act as an additional effective steady-state pressure term. To analyze the contributions of these terms, we utilize radial binning of single-point PSP measurements, as well as repeated crossings of the same stream at different distances on individual PSP orbits (i.e. "fast radial scans"). In agreement with previous work, we find that the electric potential contains sufficient energy to fully explain the acceleration of the slower wind streams. On the other hand, we find that the wave pressure plays an increasingly important role in the faster wind streams. The combination of these terms can explain the continuing acceleration of both slow and fast wind streams beyond 13.3 RS

    Electrons in the Young Solar Wind: First Results from the Parker Solar Probe

    Full text link
    The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a combination of fitting to model distributions and numerical integration for 100,000\sim 100,000 electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as 0.17\sim 0.17 AU. As expected, the electron core density and temperature increase with decreasing heliocentric distance, while the ratio of electron thermal pressure to magnetic pressure (βe\beta_e) decreases. These quantities have radial scaling consistent with previous observations farther from the Sun, with superposed variations associated with different solar wind streams. The density in the strahl also increases; however, the density of the halo plateaus and even decreases at perihelion, leading to a large strahl/halo ratio near the Sun. As at greater heliocentric distances, the core has a sunward drift relative to the proton frame, which balances the current carried by the strahl, satisfying the zero-current condition necessary to maintain quasi-neutrality. Many characteristics of the electron distributions near perihelion have trends with solar wind flow speed, βe\beta_e, and/or collisional age. Near the Sun, some trends not clearly seen at 1 AU become apparent, including anti-correlations between wind speed and both electron temperature and heat flux. These trends help us understand the mechanisms that shape the solar wind electron distributions at an early stage of their evolution

    Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

    Get PDF
    A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm² sr s MeV)⁻¹, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80° east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona
    corecore