1,486 research outputs found

    Are we saving water? Simple methods for assessing the effectiveness of groundwater conservation measures

    Get PDF
    Substantial storage reductions by irrigation pumping in many of the world’s major aquifers jeopardize future food production. As a result, new conservation measures are being utilized to reduce pumping and extend aquifer lifespans. The key question is how effective are these practices in attaining true water conservation (i.e., water use reduction) for a given area? Relationships between pumping and precipitation help provide an answer, as precipitation explains most of the variation in annual irrigation water use for aquifers in semi-arid to sub-humid climates when surface water supplies are limited. Our objective is to utilize correlations between radar precipitation and irrigation groundwater use at a range of spatial scales to assess the effectiveness of conservation approaches in the High Plains aquifer in the central USA. Linear regressions between pumping and precipitation for a conservation area established in 2013 in northwest Kansas indicate that water use and water use per irrigated area were over 27 % less and 25 % less, respectively, during 2013–2021 compared to the same climatic conditions during 2005–2012. Similar regressions found over a 38 % reduction and 23 % reduction in irrigation water use and use per irrigated area, respectively, during 2018–2021 compared to the same conditions during 2005–2017 in a west-central Kansas county with conservation areas. A decrease in irrigated area accounted for most of the difference between these reductions. Higher R2 values after conservation area establishment imply that irrigation tracks precipitation better due to use of soil moisture sensors and other measures as part of increased irrigation efficiency and enhanced water management. The precipitation and water use relationships, which are statistically significant for a wide range of spatial scales, have great potential for assessing the effectiveness of conservation practices in areas with high-quality water use and precipitation data

    Importance of a sound hydrologic foundation for assessing the future of the High Plains Aquifer in Kansas

    Get PDF
    This is the published version. Copyright National Academy of SciencesSteward et al. (1) assess the hydrologic and agricultural future of the High Plains Aquifer. We have many concerns about hydrologic aspects of their study and describe the most significant here. The authors state “…the lines of recharge plus storage in Fig. 1C very closely approximate the recent data points of metered groundwater pumping….” That is not correct, as is clear from a comparison of reported pumping data (diamonds) and the authors’ calculated groundwater use (solid line) for the SW region. There is a systematic deviation (authors’ calculated use is increasing, whereas reported metered pumping data are decreasing), which persists even when uncertain pre-1990 pumping data are neglected. The authors’ groundwater use is also markedly inconsistent with common experiences in western Kansas (2). The 2020–2025 (SW) and 2025–2030 (NW) peaks in the authors’ groundwater use are simply a product of their logistic function representation (maximum use at normalized thickness of 0.5) and are in dramatic contrast to recorded pumping trends. Given that calculated groundwater use is input into the agricultural models, we question all of the agricultural projections. The authors provide no objective basis for accepting the logistic function as an accurate tool for projecting water level declines. The comparisons in their table S1 do little to substantiate the use of the function given that the authors (i) adjust two parameters per well; (ii) adjust parameters at each well independently of the other 1,600 wells; and (iii) in aggregate, only assess the first 30% of depletion. A number of alternative functions could be found that would produce similar agreement with existing data but markedly different future projections. We note the circularity of including extrapolated 2060 values in the dataset used to develop logistic curves that are then used to make future projections. The authors state “…and measurement points were added at 1930 and 2060 from a linear extrapolation of observations while keeping these points within the saturated aquifer.” We are concerned about the sensitivity of future projections to inclusion of 1930 and 2060 “measurements” and to the process (unexplained) for “keeping these points within the saturated aquifer.” The authors state that “We computed recent recharge rates to preserve conservation of mass….” That cannot be correct, as is clear from a comparison of reported pumping data (diamonds) and the authors’ calculated change in storage plus recharge (solid line) for the SW region in their figure 1C; a conservation of mass calculation would produce a line through the center of mass of the reported 1981–2009 data. The calculated recharge values appear to have been adjusted in an unexplained manner. Given that, we also question the significance of the match obtained for the groundwater-supported corn plot in their figure 3A. The comparisons in their table S3 do little to substantiate the authors’ recharge estimates because of the above concerns and the lack of consistency with more recent process-based modeling investigations (3, 4). We conclude that this is an interesting, but highly flawed, mathematical exercise that has little bearing on future conditions in the High Plains Aquifer in western Kansas

    Low reproductive performance and high sow mortality in a pig breeding herd: a case study

    Get PDF
    Sow performance is a key component of the productivity of commercial pig farms. Reproductive failure in the sow is common in pig production. For every 100 sows served, 89 should farrow. In absence of specific diseases such as porcine parvovirus, pseudo-rabies, swine fever, leptospirosis and brucellosis, management failures are the most important causes of loss. A syndrome associated with reproductive inefficiency, and post-service vaginal discharge and high sow mortality in a commercial pig farm is described. Pregnancy failures exceeded 20% and sow mortality exceeded 12% for two consecutive years. The abnormal post-service vaginal discharge rate was 1.7% during the period of investigation

    Impact of technology-based interventions for children and young people with type 1 diabetes on key diabetes self-management behaviours and prerequisites: A systematic review

    Get PDF
    Background The role of technology in the self-management of type 1 diabetes mellitus (T1DM) among children and young people is not well understood. Interventions should aim to improve key diabetes self-management behaviours (self-management of blood glucose, insulin administration, physical activity and dietary behaviours) and prerequisites (psychological outcomes and HbA1c) highlighted in the UK guidelines of the National Institute for Health and Care Excellence (NICE) for management of T1DM. The purpose was to identify evidence to assess the effectiveness of technological tools in promoting aspects of these guidelines amongst children and young people. Methods A systematic review of English language articles was conducted using the following databases: Web of Science, PubMed, Scopus, NUSearch, SAGE Journals, SpringerLink, Google Scholar, Science Direct, Sport Discus, Embase, Psychinfo and Cochrane Trials. Search terms included paediatric, type one diabetes, technology, intervention and various synonyms. Included studies examined interventions which supplemented usual care with a health care strategy primarily delivered through a technology-based medium (e.g. mobile phone, website, activity monitor) with the aim of engaging children and young people with T1DM directly in their diabetes healthcare. Studies did not need to include a comparator condition and could be randomised, non-randomised or cohort studies but not single-case studies. Results Of 30 included studies (21 RCTs), the majority measured self-monitoring of blood glucose monitoring (SMBG) frequency, clinical indicators of diabetes self-management (e.g. HbA1c) and/or psychological or cognitive outcomes. The most positive findings were associated with technology-based health interventions targeting SMBG as a behavioural outcome, with some benefits found for clinical and/or psychological diabetes self-management outcomes. Technological interventions were well accepted by children and young people. For the majority of included outcomes, clinical relevance was deemed to be little or none. Conclusions More research is required to assess which elements of interventions are most likely to produce beneficial behavioural outcomes. To produce clinically relevant outcomes, interventions may need to be delivered for at least 1 year and should consider targeting individuals with poorly managed diabetes. It is not possible to determine the impact of technology-based interventions on insulin administration, dietary habits and/or physical activity behaviour due to lack of evidence

    Oral contraceptive use and ovarian cancer risk among carriers of BRCA1 or BRCA2 mutations

    Get PDF
    Women with mutations of the genes BRCA1 or BRCA2 are at increased risk of ovarian cancer. Oral contraceptives protect against ovarian cancer in general, but it is not known whether they protect against the disease in carriers of these mutations. We obtained self-reported lifetime histories of oral contraceptive use from 451 women who carried mutations of BRCA1 or BRCA2. We used conditional logistic regression to estimate the odds ratios associated with oral contraceptive use, comparing the histories of 147 women with ovarian cancer (cases) to those of 304 women without ovarian cancer (controls) who were matched to cases on year of birth, country of residence and gene (BRCA1 vs BRCA2). Reference ages for controls had to exceed the ages at diagnosis of their matched cases. After adjusting for parity, the odds-ratio for ovarian cancer associated with use of oral contraceptives for at least 1 year was 0.85 (95 percent confidence interval, 0.53-1.36). The risk decreased by 5% (1-9%) with each year of use (P for trend=0.01). Use for 6 or more years was associated with an odds-ratio of 0.62 (0.35-1.09). These data support the hypothesis that long-term oral contraceptive use reduces the risk of ovarian cancer among women who carry mutations of BRCA1 or BRCA2

    Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    Get PDF
    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide.METHODS: We examined single nucleotide polymorphisms (SNPs) (n = 288) from 39 cell cycle regulation genes, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors, in a two-stage study. White, non-Hispanic cases (n = 829) and ovarian cancer-free controls (n = 941) were genotyped using an Illumina assay.RESULTS: Eleven variants in nine genes (ABL1, CCNB2, CDKN1A, CCND3, E2F2, CDK2, E2F3, CDC2, and CDK7) were associated with risk of ovarian cancer in at least one genetic model. Seven SNPs were then assessed in four additional studies with 1689 cases and 3398 controls. Association between risk of ovarian cancer and ABL1 rs2855192 found in the original population [odds ratio, ORBB vs AA 2.81 (1.29-6.09), P = 0.01] was also observed in a replication population, and the association remained suggestive in the combined analysis [ORBB vs AA 1.59 (1.08-2.34), P = 0.02]. No other SNP associations remained suggestive in the replication populations.CONCLUSION: ABL1 has been implicated in multiple processes including cell division, cell adhesion and cellular stress response. These results suggest that characterization of the function of genetic variation in this gene in other ovarian cancer populations is warranted. British Journal of Cancer (2009) 101, 1461-1468. doi: 10.1038/sj.bjc.6605284 www.bjcancer.com Published online 8 September 2009 (C) 2009 Cancer Research U
    • …
    corecore