111 research outputs found

    Properties of the series solution for PainlevƩ I

    Get PDF
    We present some observations on the asymptotic behaviour of the coefficients in the Laurent series expansion of solutions of the first PainlevƩ equation. For the general solution, explicit recursive formulae for the Taylor expansion of the tau-function around a zero are given, which are natural extensions of analogous formulae for the elliptic sigma function, as given by Weierstrass. Numerical and exact results on the symmetric solution which is singular at the origin are also presented

    Micro-evolutionary diversification among Indian Ocean parrots: temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion

    Get PDF
    Almost 90% of global bird extinctions have occurred on islands. The loss of endemic spe- cies from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th cen- tury, many of these parrots have become extinct or have declined in numbers. Alongside the extinction of species, a number of the Indian Ocean islands have experienced coloni- zation by highly invasive parrots, such as the Ring-necked Parakeet Psittacula krameri. Such extinctions and invasions can, on an evolutionary timescale, drive changes in spe- cies composition, genetic diversity and turnover in phylogenetic diversity, all of which can have important impacts on species potential for adaptation to changing environmen- tal and climatic conditions. Using mtDNA cytochrome b data, we resolve the taxonomic placement of three extinct Indian Ocean parrots: the Rodrigues Psittacula exsul, Sey- chelles Psittacula wardi and Reunion Parakeets Psittacula eques. This case study quantifies how the extinction of these species has resulted in lost historical endemic phylogenetic diversity and reduced levels of species richness, and illustrates how it is being replaced by non-endemic invasive forms such as the Ring-necked Parakeet. Finally, we use our phylogenetic framework to identify and recommend a number of phylogenetically appro- priate ecological replacements for the extinct parrots. Such replacements may be intro- duced once invasive forms have been cleared, to rejuvenate ecosystem function and restore lost phylogenetic diversity

    Symmetries of a class of nonlinear fourth order partial differential equations

    Full text link
    In this paper we study symmetry reductions of a class of nonlinear fourth order partial differential equations \be u_{tt} = \left(\kappa u + \gamma u^2\right)_{xx} + u u_{xxxx} +\mu u_{xxtt}+\alpha u_x u_{xxx} + \beta u_{xx}^2, \ee where Ī±\alpha, Ī²\beta, Ī³\gamma, Īŗ\kappa and Ī¼\mu are constants. This equation may be thought of as a fourth order analogue of a generalization of the Camassa-Holm equation, about which there has been considerable recent interest. Further equation (1) is a ``Boussinesq-type'' equation which arises as a model of vibrations of an anharmonic mass-spring chain and admits both ``compacton'' and conventional solitons. A catalogue of symmetry reductions for equation (1) is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole. In particular we obtain several reductions using the nonclassical method which are no} obtainable through the classical method

    On the gravitodynamics of moving bodies

    Full text link
    In the present work we propose a generalization of Newton's gravitational theory from the original works of Heaviside and Sciama, that takes into account both approaches, and accomplishes the same result in a simpler way than the standard cosmological approach. The established formulation describes the local gravitational field related to the observables and effectively implements the Mach's principle in a quantitative form that retakes Dirac's large number hypothesis. As a consequence of the equivalence principle and the application of this formulation to the observable universe, we obtain, as an immediate result, a value of Omega = 2. We construct a dynamic model for a galaxy without dark matter, which fits well with recent observational data, in terms of a variable effective inertial mass that reflects the present dynamic state of the universe and that replicates from first principles, the phenomenology proposed in MOND. The remarkable aspect of these results is the connection of the effect dubbed dark matter with the dark energy field, which makes it possible for us to interpret it as longitudinal gravitational waves.Comment: 18 pages, 4 figures. Final version: almost identical to the reference journal; Cent. Eur. J. Phys. 201

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    • ā€¦
    corecore