19 research outputs found
Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries.
Globally, group B Streptococcus (GBS) remains the leading cause of sepsis and meningitis in young infants, with its greatest burden in the first 90 days of life. Intrapartum antibiotic prophylaxis (IAP) for women at risk of transmitting GBS to their newborns has been effective in reducing, but not eliminating, the young infant GBS disease burden in many high income countries. However, identification of women at risk and administration of IAP is very difficult in many low and middle income country (LMIC) settings, and is not possible for home deliveries. Immunization of pregnant women with a GBS vaccine represents an alternate pathway to protecting newborns from GBS disease, through the transplacental antibody transfer to the fetus in utero. This approach to prevent GBS disease in young infants is currently under development, and is approaching late stage clinical evaluation. This manuscript includes a review of the natural history of the disease, global disease burden estimates, diagnosis and existing control options in different settings, the biological rationale for a vaccine including previous supportive studies, analysis of current candidates in development, possible correlates of protection and current status of immunogenicity assays. Future potential vaccine development pathways to licensure and use in LMICs, trial design and implementation options are discussed, with the objective to provide a basis for reflection, rather than recommendations
Recommended from our members
Geophysics Field Camp 2009
An interdisciplinary survey consisting of four geophysical methods was conducted on the western edge of the Apache Generating Station’s property in Willcox, Arizona. The aim of the survey was to apply various methods for the detection of earth fissures and desiccation cracks. The geophysical methods used were static magnetic field measurements, frequency domain electromagnetics (FEM), ground penetrating radar (GPR), and seismic. Two grids were delineated and surveyed by each method. Grid 1 was set up at a site containing a fissure with visible surface expression over some parts of the grid, and Grid 2 was set up at a site with little visible surface expression of the fissure, but was suspected to contain a fissure in the subsurface. At another location, northwest of the Apache Generating Station, three lines were surveyed in an area of known desiccation cracks. All of the methods showed an anomaly associated with the fissure in Grid 1. Furthermore, at locations where the fissure is not visible in Grid 1, there were still strong anomalies in line with the suspected location of the fissure extending below the surface. Magnetic data from Grid 2 suggests that magnetics may not be a useful method in subsurface earth fissure detection at this site, where we believe that the fissure is only a very small crack with small aperture at depth. The electromagnetic results from Grid 2 show anomalies extending from lines 1 through 5 where there is only minimal surface expression in lines 1 and 2 and no surface expression in lines 3-5. No anomaly was seen in the northern end of Grid 2. It was found that GPR in Grid 2 did not display conclusive results in distinguishing subsurface earth fissure anomalies from other anomalies, such as roots. Seismic lines in Grid 2 show anomalies in the profiles that could indicate the presence of earth fissures; however a thin high velocity horizon may appear as a subsurface fissure, and this made interpretations more challenging. At the desiccation crack site, there is evidence of a shallow feature, which we interpret to be a dessication crack and not an earth fissure. A dirt road was present at the desiccation crack site, and it is possible that the road may have produced some of the observed anomalies due to rain-water channeling effects. The locations of fissures were confirmed by trenches excavated at the locations where anomalies were visible in the geophysical data, but where the fissures were not exposed at the surface.The Geophysics Field Camp Reports are made available by the Laboratory for Advanced Subsurface Imaging (LASI) and the University of Arizona Libraries. Visit the LASI website for more information http://www.lasi.arizona.edu