18 research outputs found

    How do metalloenzymes propagate and control chemical reactions?

    Get PDF
    Enzymes control and propagate a dizzying array of chemical reactions, including radical reactions and reactions cleaving carbon-carbon bonds. Metalloenzymes, which contain a metal cofactor, are particularly adept at propagating these reactions. This thesis focuses on several metalloenzymes; each an example of a different unique reaction control strategy. Both experimental and computational methodologies have been employed in order to identify specific residues or features which contribute to each enzyme\u27s ability to control the reaction. Emphasis is made on special properties of the metal Manganese. Controlling residues include not only first shell or active site residues, but also residues more distant from the active-site. Further, manipulation of such residues can be used to alter reactivity at non -active-sites, or to alter the apparent electrostatics of the protein (in the case of substitution of hydrogen with fluorine). Electron Paramagnetic Resonance (EPR) and other forms of magnetic spectroscopy can be used to evaluate subtle differences imposed by substitution for controlling residues to a metal center, which gives further insight into the electronic contributions of given residues, as well as the electronic properties of metal cofactors. In summary, the catalysis by Mn-dependent and other metal-dependent metalloenzymes can be investigated through multiple kinetic and spectroscopic avenues, unveiling suprising and novel themes in enzymatic catalysis, such as mechano-chemical switches and super long-distance metallo-interactions

    A Mechanochemical Switch to Control Radical Intermediates

    Get PDF
    B12-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB12-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is “off”, the 5â€Č-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch “on,” the enzyme environment becomes the driving force to impose a distinct conformation of the 5â€Č-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions

    Assigning the EPR fine structure parameters of the Mn(II) centers in bacillus subtilis oxalate decarboxylase by site-directed mutagenesis and DFT/MM calculations

    Get PDF
    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants

    Voltage-gated K+ channels sensitive to stromatoxin-1 regulate myogenic and neurogenic contractions of rat urinary bladder smooth muscle

    No full text
    Members of the voltage-gated K+ (KV) channel family are suggested to control the resting membrane potential and the repolarization phase of the action potential in urinary bladder smooth muscle (UBSM). Recent studies report that stromatoxin-1, a peptide isolated from tarantulas, selectively inhibits KV2.1, KV2.2, KV4.2, and KV2.1/9.3 channels. The objective of this study was to investigate whether KV channels sensitive to stromatoxin-1 participate in the regulation of rat UBSM contractility and to identify their molecular fingerprints. Stromatoxin-1 (100 nM) increased the spontaneous phasic contraction amplitude, muscle force, and tone in isolated UBSM strips. However, stromatoxin-1 (100 nM) had no effect on the UBSM contractions induced by depolarizing agents such as KCl (20 mM) or carbachol (1 ÎŒM). This indicates that, under conditions of sustained membrane depolarization, the KV channels sensitive to stromatoxin-1 have no further contribution to the membrane excitability and contractility. Stromatoxin-1 (100 nM) increased the amplitude of the electrical field stimulation-induced contractions, suggesting also a role for these channels in neurogenic contractions. RT-PCR experiments on freshly isolated UBSM cells showed mRNA expression of KV2.1, KV2.2, and KV9.3, but not KV4.2 channel subunits. Protein expression of KV2.1 and KV2.2 channels was detected using Western blot and was further confirmed by immunocytochemical detection in freshly isolated UBSM cells. These novel findings indicate that KV2.1 and KV2.2, but not KV4.2, channel subunits are expressed in rat UBSM and play a key role in opposing both myogenic and neurogenic UBSM contractions

    Stimulation of ÎČ3-adrenoceptors relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+-activated K+ channels

    No full text
    We investigated the role of large-conductance Ca2+-activated K+ (BK) channels in ÎČ3-adrenoceptor (ÎČ3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific ÎČ3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific ÎČ3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344. Iberiotoxin, a specific BK channel inhibitor, shifts the BRL 37344 concentration response curves for contraction amplitude, net muscle force, and tone to the right. Freshly dispersed UBSM cells and the perforated mode of the patch-clamp technique were used to determine further the role of ÎČ3-AR stimulation by BRL 37344 on BK channel activity. BRL 37344 increased spontaneous, transient, outward BK current (STOC) frequency by 46.0 ± 20.1%. In whole cell mode at a holding potential of Vh = 0 mV, the single BK channel amplitude was 5.17 ± 0.28 pA, whereas in the presence of BRL 37344, it was 5.55 ± 0.41 pA. The BK channel open probability was also unchanged. In the presence of ryanodine and nifedipine, the current-voltage relationship in response to depolarization steps in the presence and absence of BRL 37344 was identical. In current-clamp mode, BRL 37344 caused membrane potential hyperpolarization from −26.1 ± 2.1 mV (control) to −29.0 ± 2.2 mV. The BRL 37344-induced hyperpolarization was eliminated by application of iberiotoxin, tetraethylammonium or ryanodine. The data indicate that stimulation of ÎČ3-AR relaxes rat UBSM by increasing the BK channel STOC frequency, which causes membrane hyperpolarization and thus relaxation
    corecore