4,829 research outputs found

    Wall Effects in Cavity Flows and their Correction Rules

    Get PDF
    The wall effects in cavity flows have been long recognized to be more important and more difficult to determine than those in single-phase, nonseparated flows. Earlier theoretical investigations of this problem have been limited largely to simple body forms in plane flows, based on some commonly used cavity-flow models, such as the Riabouchinsky, the reentrant jet, or the linearized flow model, to represent a finite cavity. Although not meant to be exhaustive, references may be made to Cisotti (1922), Birkhoff, Plesset and Simmons (1950, 1952), Gurevich (1953), Cohen et al. (1957, 1958), and Fabula (1964). The wall effects in axisymmetric flows with a finite cavity has been evaluated numerically by Brennen (1969) for a disk and a sphere. Some intricate features of the wall effects have been noted in experimental studies by Morgan (1966) and Dobay (1967). Also, an empirical method for correcting the wall effect has been proposed by Meijer (1967). The presence of lateral flow boundaries in a closed water tunnel introduces the following physical effects: (i) First, in dealing with the part of irrotational flow outside the viscous region, these flow boundaries will impose a condition on the flow direction at the rigid tunnel walls. This "streamline-blocking" effect will produce extraneous forces and modifications of cavity shape. (ii) The boundary layer built up at the tunnel walls may effectively reduce the tunnel cross-sectional area, and generate a longitudinal pressure gradient in the working section, giving rise to an additional drag force known as the "horizontal buoyancy." (iii) The lateral constraint of tunnel walls results in a higher velocity outside the boundary layer, and hence a greater skin friction at the wetted body surface. (iv) The lateral constraint also affects the spreading of the viscous wake behind the cavity, an effect known as the "wake-blocking." (v) It may modify the location of the "smooth detachment" of cavity boundary from a continuously curved body. In the present paper, the aforementioned effect (i) will be investigated for the pure-drag flows so that this primary effect can be clarified first. Two cavity flow models, namely, the Riabouchinsky and the open-wake (the latter has been attributed, independently, to Joukowsky, Roshko, and Eppler) models, are adopted for detailed examination. The asymptotic representations of these theoretical solutions, with the wall effect treated as a small correction to the unbounded-flow limit, have yielded two different wall-correction rules, both of which can be applied very effectively in practice. It is of interest to note that the most critical range for comparison of these results lies in the case when the cavitating body is slender, rather than blunt ones, and when the cavity is short, instead of very long ones in the nearly choked-flow state. Only in this critical range do these flow models deviate significantly from each other, thereby permitting a refined differentiation and a critical examination of the accuracy of these flow models in representing physical flows. A series of experiments carefully planned for this purpose has provided conclusive evidences, which seem to be beyond possible experimental uncertainties, that the Riabouchinsky model gives a very satisfactory agreement with the experimental results, and is superior to other models, even in the most critical range when the wall effects are especially significant and the differences between these theoretical flow models become noticeably large. These outstanding features are effectively demonstrated by the relatively simple case of a symmetric wedge held in a non-lifting flow within a closed tunnel, which we discuss in the sequel

    3-D Models of Embedded High-Mass Stars: Effects of a Clumpy Circumstellar Medium

    Full text link
    We use 3-D radiative transfer models to show the effects of clumpy circumstellar material on the observed infrared colors of high mass stars embedded in molecular clouds. We highlight differences between 3-D clumpy and 1-D smooth models which can affect the interpretation of data. We discuss several important properties of the emergent spectral energy distribution (SED): More near-infrared light (scattered and direct from the central source) can escape than in smooth 1-D models. The near- and mid-infrared SED of the same object can vary significantly with viewing angle, depending on the clump geometry along the sightline. Even the wavelength-integrated flux can vary with angle by more than a factor of two. Objects with the same average circumstellar dust distribution can have very different near-and mid-IR SEDs depending on the clump geometry and the proximity of the most massive clump to the central source. Although clumpiness can cause similar objects to have very different SEDs, there are some observable trends. Near- and mid-infrared colors are sensitive to the weighted average distance of clumps from the central source and to the magnitude of clumpy density variations (smooth-to-clumpy ratio). Far-infrared emission remains a robust measure of the total dust mass. We present simulated SEDs, colors, and images for 2MASS and Spitzer filters. We compare to observations of some UCHII regions and find that 3-D clumpy models fit better than smooth models. In particular, clumpy models with fractal dimensions in the range 2.3-2.8, smooth to clumpy ratios of <50%, and density distributions with shallow average radial density profiles fit the SEDs best.Comment: accepted to ApJ; version with full-res figures: http://www.astro.virginia.edu/~ri3e/clumpy3d.pd

    From the Technical to the Personal: Teaching and Learning Health Insurance Regulation and Reform

    Get PDF
    In the Fall of 2016, I taught Health Law and Policy for the fourth consecutive semester. Over time, one thing has become increasingly clear: the aspect of this course that I work with most closely as a scholar—the regulation of health care financing and insurance, including the Patient Protection and Affordable Care Act (ACA)—is also the material that I find the most challenging to teach. Every time I reflect on teaching this material, and hear from students about how they learn this material, the thing that stands out is how critical it is that my students understand the profound impact that this technical subject has on individuals’ lives. Health insurance regulation simultaneously shapes and is an expression of social values. It defines the types of harms we expect individuals to shoulder on their own and what we are willing to mitigate collectively, as a society. Every rule that expands the scope of insurance—whether private or social insurance—is a signal of greater social solidarity with respect to each other’s health. Every contraction of the scope of insurance is the opposite, and leaves individuals more vulnerable to poor health or financial insecurity due to high health care spending. These broader implications are what draw me to the topic—as a teacher and as a scholar. My ultimate goal is for my students to understand this social meaning: why insurance is regulated as it is, how that regulation reflects larger social values, and the impact—both intended and unintended—that insurance regulation has on the shape of our society. When asked to write this Article on teaching health insurance regulation and reform for the Saint Louis University Law Journal Teaching Issue, I took the opportunity to confirm that what I thought worked in the classroom was actually working. To this end, I asked two of my former students to reflect, as my co-authors, on learning health insurance regulation and reform in my Health Law and Policy class, and I discovered that some of my aims were hitting the mark and others could benefit from refinement. In Part I of this Article, I describe my goals and approaches in teaching these topics as well as why this material can be difficult to teach. My student co-authors reflect on their own experiences in learning this material in Part II, including what they took away from it and what questions remain. In the final Part of the Article, I highlight how my co-authors’ insights have informed my teaching

    Herschel Observations of a Newly Discovered UX Ori Star in the Large Magellanic Cloud

    Full text link
    The LMC star, SSTISAGE1C J050756.44-703453.9, was first noticed during a survey of EROS-2 lightcurves for stars with large irregular brightness variations typical of the R Coronae Borealis (RCB) class. However, the visible spectrum showing emission lines including the Balmer and Paschen series as well as many Fe II lines is emphatically not that of an RCB star. This star has all of the characteristics of a typical UX Ori star. It has a spectral type of approximately A2 and has excited an H II region in its vicinity. However, if it is an LMC member, then it is very luminous for a Herbig Ae/Be star. It shows irregular drops in brightness of up to 2 mag, and displays the reddening and "blueing" typical of this class of stars. Its spectrum, showing a combination of emission and absorption lines, is typical of a UX Ori star that is in a decline caused by obscuration from the circumstellar dust. SSTISAGE1C J050756.44-703453.9 has a strong IR excess and significant emission is present out to 500 micron. Monte Carlo radiative transfer modeling of the SED requires that SSTISAGE1C J050756.44-703453.9 has both a dusty disk as well as a large extended diffuse envelope to fit both the mid- and far-IR dust emission. This star is a new member of the UX Ori subclass of the Herbig Ae/Be stars and only the second such star to be discovered in the LMC.Comment: ApJ, in press. 9 pages, 5 figure

    Reference Standards for Body Fat Measure Using GE Dual Energy X-Ray Absorptiometry in Caucasian Adults

    Full text link
    Background Dual energy x-ray absorptiometry (DXA) is an established technique for the measurement of body composition. Reference values for these variables, particularly those related to fat mass, are necessary for interpretation and accurate classification of those at risk for obesityrelated health complications and in need of lifestyle modifications (diet, physical activity, etc.). Currently, there are no reference values available for GE-Healthcare DXA systems and it is known that whole-body and regional fat mass measures differ by DXA manufacturer. Objective To develop reference values by age and sex for DXA-derived fat mass measurements with GE-Healthcare systems. Methods A de-identified sample of 3,327 participants (2,076 women, 1,251 men) was obtained from Ball State University\u27s Clinical Exercise Physiology Laboratory and University of Wisconsin- Milwaukee\u27s Physical Activity & Health Research Laboratory. All scans were completed using a GE Lunar Prodigy or iDXA and data reported included percent body fat (%BF), fat mass index (FMI), and ratios of android-to-gynoid (A/G), trunk/limb, and trunk/leg fat measurements. Percentiles were calculated and a factorial ANOVA was used to determine differences in the mean values for each variable between age and sex. Results Normative reference values for fat mass variables from DXA measurements obtained from GE-Healthcare DXA systems are presented as percentiles for both women and men in 10- year age groups. Women had higher (p\u3c0.01) mean %BF and FMI than men, whereas men had higher (p\u3c0.01) mean ratios of A/G, trunk/limb, and trunk/leg fat measurements than women

    Dessins, their delta-matroids and partial duals

    Full text link
    Given a map M\mathcal M on a connected and closed orientable surface, the delta-matroid of M\mathcal M is a combinatorial object associated to M\mathcal M which captures some topological information of the embedding. We explore how delta-matroids associated to dessins d'enfants behave under the action of the absolute Galois group. Twists of delta-matroids are considered as well; they correspond to the recently introduced operation of partial duality of maps. Furthermore, we prove that every map has a partial dual defined over its field of moduli. A relationship between dessins, partial duals and tropical curves arising from the cartography groups of dessins is observed as well.Comment: 34 pages, 20 figures. Accepted for publication in the SIGMAP14 Conference Proceeding
    • …
    corecore