5,218 research outputs found

    A constraint on a varying proton--electron mass ratio 1.5 billion years after the Big Bang

    Full text link
    A molecular hydrogen absorber at a lookback time of 12.4 billion years, corresponding to 10%\% of the age of the universe today, is analyzed to put a constraint on a varying proton--electron mass ratio, μ\mu. A high resolution spectrum of the J1443++2724 quasar, which was observed with the Very Large Telescope, is used to create an accurate model of 89 Lyman and Werner band transitions whose relative frequencies are sensitive to μ\mu, yielding a limit on the relative deviation from the current laboratory value of Δμ/μ=(−9.5±5.4stat±5.3sys)×10−6\Delta\mu/\mu=(-9.5\pm5.4_{\textrm{stat}} \pm 5.3_{\textrm{sys}})\times 10^{-6}.Comment: Accepted for publication in PRL. Includes supplemental materia

    The Infrared Massive Stellar Content of M83

    Full text link
    We present an analysis of archival Spitzer images and new ground-based and Hubble Space Telescope (HST) near-infrared (IR) and optical images of the field of M83 with the goal of identifying rare, dusty, evolved massive stars. We present point source catalogs consisting of 3778 objects from SpitzerSpitzer Infrared Array Camera (IRAC) Band 1 (3.6 μ\mum) and Band 2 (4.5 μ\mum), and 975 objects identified in Magellan 6.5m FourStar near-IR JJ and KsK_{\rm s} images. A combined catalog of coordinate matched near- and mid-IR point sources yields 221 objects in the field of M83. Using this photometry we identify 185 massive evolved stellar candidates based on their location in color-magnitude and color-color diagrams. We estimate the background contamination to our stellar candidate lists and further classify candidates based on their appearance in HSTHST Wide Field Camera 3 (WFC3) observations of M83. We find 49 strong candidates for massive stars which are very promising objects for spectroscopic follow-up. Based on their location in a B−VB-V versus V−IV-I diagram, we expect at least 24, or roughly 50%, to be confirmed as red supergiants.Comment: 32 pages, 23 figures, accepted for publication in A&

    Anomalous Multiplicity Fluctuations from Phase Transitions in Heavy Ion Collisions

    Full text link
    Event-by-event fluctuations and correlations between particles produced in relativistic nuclear collisions are studied. The fluctuations in positive, negative, total and net charge are closely related through correlations. In the event of a phase transitions to a quark-gluon plasma, fluctuations in total and net charge can be enhanced and reduced respectively which, however, is very sensitive to the acceptance and centrality. If the colliding system experiences strong density fluctuations due, e.g., to droplet formation in a first-order phase transition, all fluctuations can be enhanced substantially. The importance of fluctuations and correlations is exemplified by event-by-event measurement of the multiplicities of J/ΨJ/\Psi's and charged particles since these observables should anti-correlate in the presence of co-mover or anomalous absorption.Comment: revised version to appear in Phys. Rev. C, 5 page

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids: Isobutyric Acid-Water and 1-Butanol-Water in a Spinning-Drop Tensiometer

    Get PDF
    We report definitive evidence for an effective interfacial tension between two types of miscible fluids using spinning-drop tensiometry (SDT). Isobutyric acid (IBA) and water have an upper critical solution temperature (UCST) of 26.3 degrees C. We created a drop of the IBA-rich phase in the water-rich phase below the UCST and then increased the temperature above it. Long after the fluids have reached thermal equilibrium, the drop persists. By plotting the inverse of the drop radius cubed (r(-3)) vs the rotation rate squared (omega(2)), we confirmed that an interfacial tension exists and estimated its value. The transition between the miscible fluids remained sharp instead of becoming more diffuse, and the drop volume decreased with time. We observed droplet breakup via the Rayleigh-Tomotika instability above the UCST when the rotation rate was decreased by 80%, again demonstrating the existence of an effective inter-facial tension. When pure IBA was injected into water above the UCST, drops formed inside the main drop even as the main drop decreased in volume with time. We also studied 1-butanol in water below the solubility limit. Effective interfacial tension values measured over time were practically constant, while the interface between the two phases remains sharp as the volume of the drop declines. The effective interfacial tension was found to be insensitive to changes in temperature and always larger than the equilibrium interfacial tension. Although these results may not apply to all miscible fluids, they clearly show that an effective interfacial tension can exist and be measured by SDT for some systems
    • …
    corecore