749 research outputs found
Factors Impacting Habitable Volume Requirements: Results from the 2011 Habitable Volume Workshop
This report documents the results of the Habitable Volume Workshop held April 18-21, 2011 in Houston, TX at the Center for Advanced Space Studies-Universities Space Research Association. The workshop was convened by NASA to examine the factors that feed into understanding minimum habitable volume requirements for long duration space missions. While there have been confinement studies and analogs that have provided the basis for the guidance found in current habitability standards, determining the adequacy of the volume for future long duration exploration missions is a more complicated endeavor. It was determined that an improved understanding of the relationship between behavioral and psychosocial stressors, available habitable and net habitable volume, and interior layouts was needed to judge the adequacy of long duration habitat designs. The workshop brought together a multi-disciplinary group of experts from the medical and behavioral sciences, spaceflight, human habitability disciplines and design professionals. These subject matter experts identified the most salient design-related stressors anticipated for a long duration exploration mission. The selected stressors were based on scientific evidence, as well as personal experiences from spaceflight and analogs. They were organized into eight major categories: allocation of space; workspace; general and individual control of environment; sensory deprivation; social monotony; crew composition; physical and medical issues; and contingency readiness. Mitigation strategies for the identified stressors and their subsequent impact to habitat design were identified. Recommendations for future research to address the stressors and mitigating design impacts are presented
Slow Wave Sleep and Long Duration Spaceflight
To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep)
Rings in the Planetesimal Disk of Beta Pic
The nearby main sequence star Beta Pictoris is surrounded by an edge-on disk
of dust produced by the collisional erosion of larger planetesimals. Here we
report the discovery of substructure within the northeast extension of the disk
midplane that may represent an asymmetric ring system around Beta Pic. We
present a dynamical model showing that a close stellar flyby with a quiescient
disk of planetesimals can create such rings, along with previously unexplained
disk asymmetries. Thus we infer that Beta Pic's planetesimal disk was highly
disrupted by a stellar encounter in the last hundred thousand years.Comment: Accepted by ApJ Letters. LaTeX, 13 pages, 4 figures, full PostScript
file available from http://www.maths.qmw.ac.uk/~jdl
Building a Shared Definitional Model of Long Duration Human Spaceflight
In 1956, on the eve of human space travel Strughold first proposed a simple classification of the present and future stages of manned flight that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to optimize the potential of the ISS as a gateway to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Initial search of formal and grey literature augmented by liaison with subject matter experts. Search strategy focused on both the use of term long duration mission and long duration spaceflight, and also broader related current and historical definitions and classification models of spaceflight. The related sea and air travel literature was also subsequently explored with a view to identifying analogous models or classification systems. There are multiple different definitions and classification systems for spaceflight including phase and type of mission, craft and payload and related risk management models. However the frequently used concepts of long duration mission and long duration spaceflight are infrequently operationally defined by authors, and no commonly referenced classical or gold standard definition or model of these terms emerged from the search. The categorization (Cat) system for sailing was found to be of potential analogous utility, with its focus on understanding the need for crew and craft autonomy at various levels of potential adversity and inability to gain outside support or return to a safe location, due to factors of time, distance and location
Overview of NASA Behavioral Health and Performance Standard Measures
NASAs Human Research Program (HRP) is developing a set of Standard Measures for use in spaceflight and spaceflight analog environments to monitor the risks of long-duration missions on human health and performance, including behavioral health, individual and team performance, and social processes. Based on measures selected, developed, and tested under the NASA-funded Behavioral Core Measures project (PI: D.F. Dinges) as well as other projects from NASAs Human Factors & Behavioral Performance research portfolio, NASAs Behavioral Health & Performance (BHP) Laboratory is further evaluating the operational feasibility, acceptability, and validity of a multidisciplinary suite of objective, subjective, behavioral, and biological measures for monitoring monitor behavioral health, individual and team performance, and social processes over time. The inaugural generation of the NASA Behavioral Health & Performance (BHP) Standard Measures includes a neurocognitive test battery, actigraphy, physical proximity sensors, cardiovascular monitors, and subjective self-reports of mood, depression, and various team and social processes and performance outcomes
Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders
The NASA commitment to human space flight includes continuing to fly astronauts on the ISS until it is decommissioned as well as possibly returning astronauts to the moon or having astronauts venture to an asteroid or Mars. As missions leave low Earth orbit and explore deeper space, BHP supports and conducts research to enable a risk posture that considers the risk of adverse cognitive or behavioral conditions and psychiatric disorders acceptable given mitigations, for pre-, in, and post-flight.The Human System Risk Board (HSRB) determines the risk of various mission scenarios using a likelihood (per person per year) by consequences matrix examining those risks across two categorieslong term health and operational (within mission). Colors from a stoplight signal are used by HSRB and quickly provide a means of assessing overall perceived risk for a particular mission scenario. Risk associated with the current six month missions on the ISS are classified as accepted with monitoring while planetary missions, such as a mission to Mars, are recognized to be a red risk that requires mitigation to ensure mission success.Currently, the HSRB deems that the risk of adverse cognitive or behavioral conditions and psychiatric outcomes requires mitigation for planetary missions owing to long duration isolation and radiation exposure (see Table 1). While limited research evidence exists from spaceflight, it is well known anecdotally that the shift from the two week shuttle missions to the six month ISS missions renders the psychological stressors of space as more salient over longer duration missions. Shuttle astronauts were expected just to tolerate any stressors that arose during their mission and were successful at doing so (Whitmire et al, 2013). While it is possible to deal with stressors such as social isolation and to live with incompatible crewmembers for two weeks on shuttle, ignoring it is much less likely to be a successful coping mechanism on station. For the longer missions of the ISS, astronauts require a larger, more robust set of coping skills and more psychological support. Evidence of this are the number of BHPs Operational Psychology (Op Psy) staff who have been awarded silver Snoopys by long duration astronauts, in the statements of praise for the Op Psy and Family Support Office teams, and in the written and oral statements from flown astronauts regarding difficulty of longer missions and how much Op Psy helped
Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration
Measuring electron transport (ETp) across proteins in the solid-state offers
a way to study electron transfer (ET) mechanism(s) that minimizes solvation
effects on the process. Solid state ETp is sensitive to any static
(conformational) or dynamic (vibrational) changes in the protein. Our
macroscopic measurement technique extends the use of ETp meas-urements down to
low temperatures and the concomitant lower current densities, because the
larger area still yields measurable currents. Thus, we reported previously a
surprising lack of temperature-dependence for ETp via the blue copper protein
azurin (Az), from 80K till denaturation, while ETp via apo-(Cu-free) Az was
found to be temperature de-pendent \geq 200K. H/D substitution (deuteration)
can provide a potentially powerful means to unravel factors that affect the ETp
mechanism at a molecular level. Therefore, we measured and report here the
kinetic deuterium isotope effect (KIE) on ETp through holo-Az as a function of
temperature (30-340K). We find that deuteration has a striking effect in that
it changes ETp from temperature independent to temperature dependent above
180K. This change is expressed in KIE values between 1.8 at 340K and 9.1 at
\leq 180K. These values are particularly remarkable in light of the previously
reported inverse KIE on the ET in Az in solution. The high values that we
obtain for the KIE on the ETp process across the protein monolayer are
consistent with a transport mechanism that involves
through-(H-containing)-bonds of the {\beta}-sheet structure of Az, likely those
of am-ide groups.Comment: 15 pages, 3 figures, 2 Supplementary figure
Telomere lengths in human oocytes, cleavage stage embryos and blastocysts
Telomeres are repeated sequences that protect the ends of chromosomes and harbour DNA-repair proteins. Telomeres shorten during each cell division in the absence of telomerase. When telomere length becomes critically short, cell senescence occurs. Telomere length therefore reflects both cellular ageing and capacity for division. We have measured telomere length in human germinal vesicle (GV) oocytes and pre-implantation embryos, by quantitative fluorescence in-situ hybridisation (Q-FISH), providing baseline data towards our hypothesis that telomere length is a marker of embryo quality. The numbers of fluorescent foci suggest that extensive clustering of telomeres occurs in mature GV stage oocytes, and in pre-implantation embryos. When calculating average telomere length by assuming that each signal presents one telomere, the calculated telomere length decreased from the oocyte to the cleavage stages, and increased between the cleavage stages and the blastocyst (11.12 vs 8.43 vs 12.22kb respectively, p<0.001). Other methods of calculation, based upon expected maximum and minimum numbers of telomeres, confirm that telomere length in blastocysts is significantly longer than cleavage stages. Individual blastomeres within an embryo showed substantial variation in calculated average telomere length. This study implies that telomere length changes according to the stage of pre-implantation embryo development
Meal Replacement Mass Reduction Integration and Acceptability Study
The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore we are challenged to reduce the mass of the food system by 10% while maintaining safety, nutrition, and acceptability to support crew health and performance for exploration missions. Meal replacement with nutritionally balanced, 700-900 calorie bars was identified as a method to reduce mass. However, commercially available products do not meet the requirements for a meal replacement in the spaceflight food system. The purpose of this task was to develop a variety of nutritionally balanced, high quality, breakfast replacement bars, which enable a 10% food mass savings. To date, six nutrient-dense meal replacement bars have been developed, all of which meet spaceflight nutritional, microbiological, sensory, and shelf-life requirements. The four highest scoring bars were evaluated based on final product sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. color and texture), and microbiological compliance over a period of two years to predict long-term acceptability. All bars maintained overall acceptability throughout the first year of storage, despite minor changes in color and texture. However, added vitamins C, B1, and B9 degraded rapidly in fortified samples of Banana Nut bars, indicating the need for additional development. In addition to shelf-life testing, four bar varieties were evaluated in the Human Exploration Research Analog (HERA), campaign 3, to assess the frequency with which actual meal replacement options may be implemented, based on impact to satiety and psychosocial measurements. Crewmembers (n=16) were asked to consume meal replacement bars every day for the first fifteen days of the mission and every three days for the second half of the mission. Daily surveys assessed the crew's responses to bar acceptability, mood, food fatigue and perceived stress. Preliminary results indicate that the majority of crew members were noncompliant with daily meal replacement during the first half of the mission. Several crew members chose to forgo the meal, resulting in caloric deficits that were higher on skipped-bar days. Body mass loss was significant throughout the mission. Although there was no significant difference in body mass loss overall between the first half and second half of the mission, a higher number of individual crew members lost more body mass in the first half of the mission. Analysis is still ongoing, but current trends suggest that daily involuntary meal replacement can lead to greater individual impacts on body mass and psychological factors, while meal replacement on a more limited basis may be acceptable to most crew for missions up to 30 days. This data should be considered in Orion mass trades with health and human performance
Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy
We consider the effect of inhomogeneous neutrino degeneracy on Big Bang
nucleosynthesis for the case where the distribution of neutrino chemical
potentials is given by a Gaussian. The chemical potential fluctuations are
taken to be isocurvature, so that only inhomogeneities in the electron chemical
potential are relevant. Then the final element abundances are a function only
of the baryon-photon ratio , the effective number of additional neutrinos
, the mean electron neutrino degeneracy parameter , and
the rms fluctuation of the degeneracy parameter, . We find that for
fixed , , and , the abundances of helium-4,
deuterium, and lithium-7 are, in general, increasing functions of .
Hence, the effect of adding a Gaussian distribution for the electron neutrino
degeneracy parameter is to decrease the allowed range for . We show that
this result can be generalized to a wide variety of distributions for .Comment: 9 pages, 3 figures, added discussion of neutrino oscillations,
altered presentation of figure
- …
