38 research outputs found
The use of a block diagram simulation language for rapid model prototyping
The research performed this summer focussed on the development of a predictive model for the loading of liquid oxygen (LO2) into the external tank (ET) of the shuttle prior to launch. A predictive model can greatly aid the operational personnel since instrumentation aboard the orbiter and ET is limited due to weight constraints. The model, which focuses primarily on the orbiter section of the system was developed using a block diagram based simulation language known as VisSim. Simulations were run on LO2 loading data for shuttle flights STS50 and STS55 and the model was demonstrated to accurately predict the sensor data recorded for these flights. As a consequence of the simulation results, it can be concluded that the software tool can be very useful for rapid prototyping of complex models
Deciphering the role of substrate stiffness to enhance internalization efficiency of plasmid DNA in stem cells using lipid-based nanocarriers
This study investigates the role of substrate stiffness on non-viral transfection of human adipose-derived stem cells (hASCs) with the aim to maximize hASCs expression of vascular endothelial growth factor (VEGF). The results confirm the direct effect of substrate stiffness in regulating cytoskeletal remodeling and corresponding plasmid internalization
Remote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Composites
This is the peer reviewed version of the following article: Stottlemire, B. J., Miller, J. D., Whitlow, J., Huayamares, S. G., Dhar, P., He, M., Berkland, C. J., Remote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Composites. Adv. Mater. Technol. 2021, 6, 2001099. https://doi.org/10.1002/admt.202001099, which has been published in final form at https://doi.org/10.1002/admt.202001099. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.The capacity for a soft material to combine remote sensing and remote actuation is highly desirable for many applications in soft robotics and wearable technologies. This work presents a silicone elastomer with a suspension of a small weight fraction of ferromagnetic nickel nanorods, which is capable of both sensing deformation and altering stiffness in the presence of an external magnetic field. Cylinders composed of silicone elastomer and 1% by weight nickel nanorods experience large increases in compressive modulus when exposed to an external magnetic field. Incremental compressions totaling 600 g of force applied to the same silicone–nanorod composites increase the magnetic field strength measured by a Hall effect sensor enabling the material to be used as a soft load cell capable of detecting the rate, duration, and magnitude of force applied. In addition, lattice structures are 3D printed using an ink composed of silicone elastomer and 1% by weight nickel nanorods, which possess the same sensing capacity
Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy
Nanodiamonds (NDs) have attracted considerable attention as drug delivery nanocarriers due to their low cytotoxicity and facile surface functionalization. Given these features, NDs have been recently investigated for the fabrication of nanocomposite hydrogels for tissue engineering. Here we report the synthesis of a hydrogel using photocrosslinkable gelatin methacrylamide (GelMA) and NDs as a three-dimensional scaffold for drug delivery and stem cell-guided bone regeneration. We investigated the effect of different concentration of NDs on the physical and mechanical properties of the GelMA hydrogel network. The inclusion of NDs increased the network stiffness, which in turn augmented the traction forces generated by human adipose stem cells (hASCs). We also tested the ability of NDs to adsorb and modulate the release of a model drug dexamethasone (Dex) to promote the osteogenic differentiation of hASCs. The ND-Dex complexes modulated gene expression, cell area, and focal adhesion number in hASCs. Moreover, the integration of the ND-Dex complex within GelMA hydrogels allowed a higher retention of Dex over time, resulting in significantly increased alkaline phosphatase activity and calcium deposition of encapsulated hASCs. These results suggest that conventional GelMA hydrogels can be coupled with conjugated NDs to develop a novel platform for bone tissue engineering
One-Time Compilation of Device-Level Instructions for Quantum Subroutines
A large class of problems in the current era of quantum devices involve
interfacing between the quantum and classical system. These include calibration
procedures, characterization routines, and variational algorithms. The control
in these routines iteratively switches between the classical and the quantum
computer. This results in the repeated compilation of the program that runs on
the quantum system, scaling directly with the number of circuits and
iterations. The repeated compilation results in a significant overhead
throughout the routine. In practice, the total runtime of the program
(classical compilation plus quantum execution) has an additional cost
proportional to the circuit count. At practical scales, this can dominate the
round-trip CPU-QPU time, between 5% and 80%, depending on the proportion of
quantum execution time.
To avoid repeated device-level compilation, we identify that machine code can
be parametrized corresponding to pulse/gate parameters which can be dynamically
adjusted during execution. Therefore, we develop a device-level
partial-compilation (DLPC) technique that reduces compilation overhead to
nearly constant, by using cheap remote procedure calls (RPC) from the QPU
control software to the CPU. We then demonstrate the performance speedup of
this on optimal pulse calibration, system characterization using randomized
benchmarking (RB), and variational algorithms. We execute this modified
pipeline on real trapped-ion quantum computers and observe significant
reductions in compilation time, as much as 2.7x speedup for small-scale VQE
problems
Head-Neck Dual-energy CT Contrast Media Reduction Using Diffusion Models
Iodinated contrast media is essential for dual-energy computed tomography
(DECT) angiography. Previous studies show that iodinated contrast media may
cause side effects, and the interruption of the supply chain in 2022 led to a
severe contrast media shortage in the US. Both factors justify the necessity of
contrast media reduction in relevant clinical applications. In this study, we
propose a diffusion model-based deep learning framework to address this
challenge. First, we simulate different levels of low contrast dosage DECT
scans from the standard normal contrast dosage DECT scans using material
decomposition. Conditional denoising diffusion probabilistic models are then
trained to enhance the contrast media and create contrast-enhanced images. Our
results demonstrate that the proposed methods can generate high-quality
contrast-enhanced results even for images obtained with as low as 12.5% of the
normal contrast dosage. Furthermore, our method outperforms selected competing
methods in a human reader study
Relationships between synoptic-scale transport and interannual variability of inorganic cations in surface snow at Summit, Greenland: 1992-1996
Version of RecordTo fully utilize the long-term chemical records retrieved from central Greenland ice cores, specific relationships between atmospheric circulation and the variability of chemical species in the records need to be better understood. This research examines associations between the variability of surface snow inorganic cation chemistry at Summit, Greenland (collected during 1992-1996 summer field seasons) and changes in air mass transport pathways and source regions, as well as variations in aerosol source strength. Transport patterns and source regions are determined through 10-day isentropic backward air mass trajectories during a 1 month (late May to late June) common season over the 5 years. Changes in the extent of exposed continental surfaces in source regions are evaluated to estimate aerosol-associated calcium and magnesium ion source strength, while forest fire activity in the circumpolar north is investigated to estimate aerosol ammonium ion source strength. During the 1995 common season, 3 times more calcium and magnesium accumulated in the snowpack than the other study years. Also, an increasing trend of ammonium concentration was noted throughout the 5 years. Anomalous transport pathways and velocities were observed during 1995, which likely contributed to the high levels of calcium and magnesium. Increased forest fire activity in North America was concurrent with increased levels of ammonium and potassium, except for 1996, when ion levels were above average and forest fire activity was below average. Because of the ubiquitous nature of soluble ions, we conclude that it is very difficult to establish a quantitative link between the ion content of snow and firn at Summit and changes in aerosol source regions and source strength.Slater, J. F., Dibb, J. E., Keim, B. D., & Kahl, J. D. w. (2001). Relationships between synoptic-scale transport and interannual variability of inorganic cations in surface snow at Summit, Greenland: 1992-1996. Journal of Geophysical Research 106(D18), 20,897-20,91
ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention - Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention)
The American College of Cardiology/American Heart Association/Society for Cardiovascular Angiography and Interventions (ACC/AHA/SCAI) 2005 Guideline Update for Percutaneous Coronary Intervention (PCI) contains changes in the recommendations, along with supporting text. For the purpose of comparison, this summary contains a list of the updated recommendations (middle column) alongside a list of the 2001 recommendations (left column), with each set accompanied by a comment (right column) that provides the rationale for the changes, additions, or deletions (see Table 1). References that support either the 2001 recommendations that have changed or the new or revised recommendations are cited in parentheses at the end of each recommendation or comment. A list of abbreviations is included in the Appendix. The reader is referred to the full-text guideline posted on the World Wide Web sites of the ACC, the AHA, and the SCAI for a more detailed explanation of the changes discussed here. Please note that we have changed the table of contents headings in the 2001 ACC/AHA Guidelines for Percutaneous Coronary Intervention from roman numerals to unique identifying numbers
ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention)
"The ACC/AHA Task Force on Practice Guidelines was formed to gather information and make recommendations about appropriate use of technology for the diagnosis and treatment of patients with cardiovascular disease. Percutaneous coronary interventions (PCIs) are an important group of technologies in this regard. Although initially limited to balloon angioplasty and termed percutaneous transluminal coronary angioplasty (PTCA), PCI now includes other new techniques capable of relieving coronary narrowing. Accordingly, in this document, implantation of intracoronary stents and other catheter-based interventions for treating coronary atherosclerosis are considered components of PCI. In this context, PTCA will be used to refer to those studies using only balloon angioplasty, whereas PCI will refer to the broader group of percutaneous techniques. These new technologies have impacted the effectiveness and safety profile initially established for balloon angioplasty. Moreover, additional experience has been gained in the use of adjunctive pharmacological treatment with glycoprotein (GP) IIb/IIIa receptor antagonists and the use of bivalirudin, thienopyridines, and drug-eluting stents (DES). In addition, since publication of the guidelines in 2001, greater experience in the performance of PCI in patients with acute coronary syndromes and in community hospital settings has been gained. In view of these developments, an update of these guidelines e168 Circulation February 21, 2006 is warranted. This document reflects the opinion of the ACC/AHA/SCAI writing committee charged with updating the 2001 guidelines for PCI (1).