4,824 research outputs found

    A new four-channel scanning spectrometer for ballistic-range radiometry

    Get PDF
    Four-channel, moving source scanning spectrometer for use in ballistic range radiometr

    Increasing the response of PIN photodiodes to the ultraviolet

    Get PDF
    Solid state device uses sapphire windows and avoids coatings which absorb ultraviolet radiation and ultimately alter detector geometry. Ultimate solution for ultraviolet response is geometry with maximum peripheral area and horizontal field structure to draw out photon induced current carriers

    Band structure of W and Mo by empirical pseudopotential method

    Get PDF
    The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal

    A computer program for a line-by-line calculation of spectra from diatomic molecules and atoms assuming a Voight line profile

    Get PDF
    Computer program predicts the spectra resulting from electronic transitions of diatomic molecules and atoms in local thermodynamic equilibrium. The program produces a spectrum by accounting for the contribution of each rotational and atomic line considered

    Recent advances at NASA in calculating the electronic spectra of diatomic molecules

    Get PDF
    Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented

    Application of a Bayesian Method to Absorption Spectral-Line Finding in Simulated ASKAP Data

    Full text link
    The large spectral bandwidth and wide field of view of the Australian SKA Pathfinder radio telescope will open up a completely new parameter space for large extragalactic HI surveys. Here we focus on identifying and parametrising HI absorption lines which occur in the line of sight towards strong radio continuum sources. We have developed a method for simultaneously finding and fitting HI absorption lines in radio data by using multi-nested sampling, a Bayesian Monte Carlo algorithm. The method is tested on a simulated ASKAP data cube, and is shown to be reliable at detecting absorption lines in low signal-to-noise data without the need to smooth or alter the data. Estimation of the local Bayesian evidence statistic provides a quantitative criterion for assigning significance to a detection and selecting between competing analytical line-profile models.Comment: 8 pages, 5 figures and 1 table; accepted for publication in PAS

    A new solid-state logarithmic radiometer

    Get PDF
    Combination of temperature-compensated logarithmic amplifiers and p-i-n photodiodes operating in zero-bias mode provides lightweight radiometer for detecting spectral intensities encompassing more than three decades over a range of at least 300 to 800 nanometers at low power levels

    Saloon : Mock Ballad

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5518/thumbnail.jp
    corecore