689 research outputs found
Marine Reptiles
Of the more than 12,000 species and subspecies of extant reptiles, about 100 have re-entered the ocean. Among them are seven species of sea turtles and about 80 species and subspecies of sea snakes, as well as a few other species that are occasionally or regularly found in brackish waters, including various other snakes, the saltwater crocodile, and the marine iguana of the Galapagos Islands. The largest group of marine reptiles, the sea snakes, occur in the tropical and subtropical waters of the Indian and Pacific Oceans from the east coast of Africa to the Gulf of Panama. They inhabit shallow waters along coasts, around islands and coral reefs, river mouths and travel into rivers more than 150 km away from the open ocean. A single species has been found more than 1000 km up rivers. Some have also been found in lakes. The taxonomic status of the sea snakes is still under review and no general agreement exists at the moment. The effects of the exploitation on sea snakes have been investigated in the Philippines and Australia but are almost unknown from other areas. Investigations indicate that some populations are already extinct and others are in danger of extinction in various parts of Asia. All sea turtles are endangered except one. The marine iguana of the Galapagos Islands remains vulnerable due to its limited range. Brackish water snakes are closely associated with mangrove forests and as such are subject to deforestation and coastal development schemes that result in habitat loss. In addition, some are collected for their skins. While none of the coastal species are considered in danger of extinction at the present time, many are data deficient
Affective symptoms and risk of progression to mild cognitive impairment or dementia in subjective cognitive decline: A systematic review and meta-analysis
Aims:
To systematically review the literature on outcomes for individuals with subjective cognitive decline (SCD) with concurrent affective symptoms. To conduct a meta-analysis to establish whether either higher depressive symptoms or higher levels of anxiety increased the risk of progression SCD to mild cognitive impairment (MCI) or dementia. /
Methods:
Five databases were searched from inception to February 2021 for longitudinal studies of older adults with SCD, reporting depressive and anxiety symptoms at baseline and risk of MCI or dementia at follow-up. Data were extracted and pooled using a random-effects meta-analysis. /
Results:
Twelve studies were identified. Pooled effect sizes indicated higher depressive symptoms did not increase risk of clinical progression to either MCI (RR = 0.98; 95% CI: 0.75 – 1.26) or dementia (RR = 0.69; 95% CI: 0.27 – 1.79). However, presence of anxiety or SCD-related worry did significantly increase risk of progression from subjective to objective cognitive impairment by 40% (RR = 1.40; 95% CI:1.20 – 1.63). /
Conclusions:
Affective symptoms in the form of anxiety, but not depressive symptoms, increase the risk of progression to objective cognitive impairment in individuals with SCD. Further research should focus on establishing whether psychological interventions aimed at reducing anxiety and worry also reduce the risk of clinical progression
Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease.
BackgroundThere are no effective treatments or validated clinical response markers in systemic sclerosis (SSc). We assessed imaging biomarkers and performed gene expression profiling in a single-arm open-label clinical trial of tyrosine kinase inhibitor dasatinib in patients with SSc-associated interstitial lung disease (SSc-ILD).MethodsPrimary objectives were safety and pharmacokinetics. Secondary outcomes included clinical assessments, quantitative high-resolution computed tomography (HRCT) of the chest, serum biomarker assays and skin biopsy-based gene expression subset assignments. Clinical response was defined as decrease of >5 or >20% from baseline in the modified Rodnan Skin Score (MRSS). Pulmonary function was assessed at baseline and day 169.ResultsDasatinib was well-tolerated in 31 patients receiving drug for a median of nine months. No significant changes in clinical assessments or serum biomarkers were seen at six months. By quantitative HRCT, 65% of patients showed no progression of lung fibrosis, and 39% showed no progression of total ILD. Among 12 subjects with available baseline and post-treatment skin biopsies, three were improvers and nine were non-improvers. Improvers mapped to the fibroproliferative or normal-like subsets, while seven out of nine non-improvers were in the inflammatory subset (p = 0.0455). Improvers showed stability in forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), while both measures showed a decline in non-improvers (p = 0.1289 and p = 0.0195, respectively). Inflammatory gene expression subset was associated with higher baseline HRCT score (p = 0.0556). Non-improvers showed significant increase in lung fibrosis (p = 0.0313).ConclusionsIn patients with SSc-ILD dasatinib treatment was associated with acceptable safety profile but no significant clinical efficacy. Patients in the inflammatory gene expression subset showed increase in skin fibrosis, decreasing pulmonary function and worsening lung fibrosis during the study. These findings suggest that target tissue-specific gene expression analyses can help match patients and therapeutic interventions in heterogeneous diseases such as SSc, and quantitative HRCT is useful for assessing clinical outcomes.Trial registrationClinicaltrials.gov NCT00764309
Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt–onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways
Disrupting AMPK-glycogen binding in mice increases carbohydrate utilization and reduces exercise capacity
The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy balance and metabolism and binds glycogen, the primary storage form of glucose in liver and skeletal muscle. The effects of disrupting whole-body AMPK-glycogen interactions on exercise capacity and substrate utilization during exercise in vivo remain unknown. We used male whole-body AMPK double knock-in (DKI) mice with chronic disruption of AMPK-glycogen binding to determine the effects of DKI mutation on exercise capacity, patterns of whole-body substrate utilization, and tissue metabolism during exercise. Maximal treadmill running speed and whole-body energy utilization during submaximal running were determined in wild type (WT) and DKI mice. Liver and skeletal muscle glycogen and skeletal muscle AMPK α and β2 subunit content and signaling were assessed in rested and maximally exercised WT and DKI mice. Despite a reduced maximal running speed and exercise time, DKI mice utilized similar absolute amounts of liver and skeletal muscle glycogen compared to WT. DKI skeletal muscle displayed reduced AMPK α and β2 content versus WT, but intact relative AMPK phosphorylation and downstream signaling at rest and following exercise. During submaximal running, DKI mice displayed an increased respiratory exchange ratio, indicative of greater reliance on carbohydrate-based fuels. In summary, whole-body disruption of AMPK-glycogen interactions reduces maximal running capacity and skeletal muscle AMPK α and β2 content and is associated with increased skeletal muscle glycogen utilization. These findings highlight potential unappreciated roles for AMPK in regulating tissue glycogen dynamics and expand AMPK’s known roles in exercise and metabolism
Can invasive Burmese pythons inhabit temperate regions of the southeastern United States?
Abstract Understanding potential for range expansion is critical when evaluating the risk posed by invasive species. Burmese pythons (Python molurus bivittatus) are established in southern Florida and pose a significant threat to native ecosystems. Recent studies indicate that climate suitable for the species P. molurus exists throughout much of the southern United States. We examined survivorship, thermal biology, and behavior of Burmese pythons from South Florida in a semi-natural enclosure in South Carolina, where winters are appreciably cooler than in Florida, but within the predicted region of suitable climate. All pythons acclimated to the enclosure, but most died after failing to seek appropriate refugia during sub-freezing weather. The remaining snakes used refugia but died during an unusually cold period in January 2010. Although all snakes died during the study, most survived extended periods at temperatures below those typical of southern Florida and none exhibited obvious signs of disease. Our study represents a first step in evaluating the results of climate matching models and we address factors that may affect range expansion in this invasive species
Altered spring phenology of North American freshwater turtles and the importance of representative populations
Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long‐term studies of phenology in ectothermic amniotes have been published. We test for climate‐altered phenology using long‐term studies (10–36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon,Malaclemys, Sternotherus, and Trachemys). Nesting season initiation occurs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evidence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change
Altered Intrinsic Functional Brain Architecture in Children at Familial Risk of Major Depression
Background Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional connectivity measured during the resting state in multiple distributed networks. However, it is unclear whether these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major depression. Methods We compared resting-state functional connectivity, measured with functional magnetic resonance imaging, between unaffected children of parents who had documented histories of major depression (at-risk, n = 27; 8–14 years of age) and age-matched children of parents with no lifetime history of depression (control subjects, n = 16). Results At-risk children exhibited hyperconnectivity between the default mode network and subgenual anterior cingulate cortex/orbital frontal cortex, and the magnitude of connectivity positively correlated with individual symptom scores. At-risk children also exhibited 1) hypoconnectivity within the cognitive control network, which also lacked the typical anticorrelation with the default mode network; 2) hypoconnectivity between left dorsolateral prefrontal cortex and subgenual anterior cingulate cortex; and 3) hyperconnectivity between the right amygdala and right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children and control subjects based on resting-state connectivity yielded high accuracy with high sensitivity and specificity that was superior to clinical rating scales. Conclusions Children at familial risk for depression exhibited atypical functional connectivity in the default mode, cognitive control, and affective networks. Such task-independent functional brain measures of risk for depression in children could be used to promote early intervention to reduce the likelihood of developing depression
- …