1,844 research outputs found

    Non-spherical shapes of capsules within a fourth-order curvature model

    Get PDF
    We minimize a discrete version of the fourth-order curvature based Landau free energy by extending Brakke's Surface Evolver. This model predicts spherical as well as non-spherical shapes with dimples, bumps and ridges to be the energy minimizers. Our results suggest that the buckling and faceting transitions, usually associated with crystalline matter, can also be an intrinsic property of non-crystalline membranes.Comment: 6 pages, 4 figures (LaTeX macros EPJ), accepted for publication in EPJ

    Polymerization-based signal amplification for paper-based immunoassays

    Get PDF
    Diagnostic tests in resource-limited settings require technologies that are affordable and easy to use with minimal infrastructure. Colorimetric detection methods that produce results that are readable by eye, without reliance on specialized and expensive equipment, have great utility in these settings. We report a colorimetric method that integrates a paper-based immunoassay with a rapid, visible-light-induced polymerization to provide high visual contrast between a positive and a negative result. Using Plasmodium falciparum histidine-rich protein 2 as an example, we demonstrate that this method allows visual detection of proteins in complex matrices such as human serum and provides quantitative information regarding analyte levels when combined with cellphone-based imaging. It also allows the user to decouple the capture of analyte from signal amplification and visualization steps.Bill & Melinda Gates Foundation (Award 51308)United States. Defense Advanced Research Projects Agency (HR0011-12-2-0010)National Science Foundation (U.S.). Graduate Research FellowshipBurroughs Wellcome Fund (Career Award at the Scientific Interface

    Self-assembly, Self-organization, Nanotechnology and vitalism

    No full text
    International audienceOver the past decades, self-assembly has attracted a lot of research attention and transformed the relations between chemistry, materials science and biology. The paper explores the impact of the current interest in self-assembly techniques on the traditional debate over the nature of life. The first section describes three different research programs of self-assembly in nanotechnology in order to characterize their metaphysical implications: -1- Hybridization ( using the building blocks of living systems for making devices and machines) ; -2- Biomimetics (making artifacts mimicking nature); -3- Integration (a composite of the two previous strategies). The second section focused on the elusive boundary between selfassembly and self-organization tries to map out the various positions adopted by the promoters of self-assembly on the issue of vitalism

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels

    Oxidation of graphene on metals

    Full text link
    We use low-energy electron microscopy to investigate how graphene is removed from Ru(0001) and Ir(111) by reaction with oxygen. We find two mechanisms on Ru(0001). At short times, oxygen reacts with carbon monomers on the surrounding Ru surface, decreasing their concentration below the equilibrium value. This undersaturation causes a flux of carbon from graphene to the monomer gas. In this initial mechanism, graphene is etched at a rate that is given precisely by the same non-linear dependence on carbon monomer concentration that governs growth. Thus, during both growth and etching, carbon attaches and detaches to graphene as clusters of several carbon atoms. At later times, etching accelerates. We present evidence that this process involves intercalated oxygen, which destabilizes graphene. On Ir, this mechanism creates observable holes. It also occurs mostly quickly near wrinkles in the graphene islands, depends on the orientation of the graphene with respect to the Ir substrate, and, in contrast to the first mechanism, can increase the density of carbon monomers. We also observe that both layers of bilayer graphene islands on Ir etch together, not sequentially.Comment: 15 pages, 10 figures. Manuscript revised to improve discussion, following referee comments. Accepted for publication in Journal of Physical Chemistry C, Feb. 11, 201

    Self-assembled nanogel made of mannan : synthesis and characterization

    Get PDF
    Amphiphilic mannan (mannan-C16) was synthesized by the Michael addition of hydrophobic 1-hexadecanethiol (C16) to hydroxyethyl methacrylated mannan (mannan-HEMA). Mannan-C16 formed nanosized aggregates in water by selfassembly via the hydrophobic interaction among C16molecules as confirmed by hydrogen nuclearmagnetic resonance (1H NMR), fluorescence spectroscopy, cryo-field emission scanning electron microscopy (cryo-FESEM), and dynamic light scattering (DLS). The mannan-C16 critical aggregation concentration (cac), calculated by fluorescence spectroscopy with Nile red and pyrene, ranged between 0.04 and 0.02mg/mL depending on the polymer degree of substitution ofC16 relative to methacrylated groups. Cryo-FESEM micrographs revealed that mannan-C16 formed irregular spherical macromolecular micelles, in this work designated as nanogels, with diameters ranging between 100 and 500 nm. The influence of the polymer degree of substitution, DSHEMA andDSC16, on the nanogel size and zeta potential was studied byDLS at different pH values and ionic strength and as a function of mannan-C16 and urea concentrations. Under all tested conditions, the nanogel was negatively charged with a zeta potential close to zero. Mannan-C16 with higher DSHEMA and DSC16 values formed larger nanogels andwere also less stable over a 6month storage period and at concentrations close to the cac.When exposed to solutions of different pH and aggressive conditions of ionic strength and urea concentration, the size of mannan-C16 varied to some extent but was always in the nanoscale range.International Iberian Nanotechnology Laboratory (INL)Fundação para a Ciência e a Tecnologia (FCT

    Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    Full text link
    The formation energies of nanostructures play an important role in determining their properties, including the catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we find that the density functional theory (DFT) calculated formation energies of (2,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces may be described semi-quantitatively by the fraction of metal--oxygen bonds broken and the bonding band centers in the bulk metal oxide

    Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications

    Full text link
    Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages including 8 figure
    corecore