386 research outputs found
20GHz picosecond pulse generation by 1300nm mode-locked quantum dot master oscillator power amplifier
An integrated 1300 nm QD mode-locked narrow stripe MOPA is shown to generate 10.5 ps Fourier transform limited pulses at 20 GHz. The pulse train has an average power of 46.4 mW and peak powers exceeding 0.31 W
Non-critical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture
Vertically coupled microrings in an all-pass filter configuration are fabricated with a range of waveguide misalignments deliberately introduced into the lithography masks to demonstrate noncritical fabrication requirements. The microrings have a mode-expanded bus design which allows a greatly reduced variation in power coupling coefficient-only 6% for fabrication misalignments as high as 1 mum. This represents a five-fold improvement in fabrication tolerance when compared with conventional design
Demonstration of a lossless monolithic 16x16 QW SOA switch
10Gb/s error-free operation of the first monolithic 16×16 quantum well semiconductor optical amplifier switch is demonstrated. The switch has a 2dB facet-to-facet gain and a minimum power penalty of 2.5dB
40 Gb/s data transmission over a 1 m long multimode polymer spiral waveguide
We report record error-free data transmission of 40Gb/s over a 1m-long multimode polymer spiral waveguide. The waveguide imposes no significant transmission impairments in the link despite its highly-multimoded nature and long length, demonstrating its potential in high-speed board-level optical interconnections
Randomized trial comparing proactive, high-dose versus reactive, low-dose intravenous iron supplementation in hemodialysis (PIVOTAL) : Study design and baseline data
Background: Intravenous (IV) iron supplementation is a standard maintenance treatment for hemodialysis (HD) patients, but the optimum dosing regimen is unknown. Methods: PIVOTAL (Proactive IV irOn Therapy in hemodiALysis patients) is a multicenter, open-label, blinded endpoint, randomized controlled (PROBE) trial. Incident HD adults with a serum ferritin 700 μg/L and/or TSAT ≥40%) or a reactive, low-dose IV iron arm (iron sucrose administered if ferritin <200 μg/L or TSAT < 20%). We hypothesized that proactive, high-dose IV iron would be noninferior to reactive, low-dose IV iron for the primary outcome of first occurrence of nonfatal myocardial infarction (MI), nonfatal stroke, hospitalization for heart failure or death from any cause. If noninferiority is confirmed with a noninferiority limit of 1.25 for the hazard ratio of the proactive strategy relative to the reactive strategy, a test for superiority will be carried out. Secondary outcomes include infection-related endpoints, ESA dose requirements, and quality-of-life measures. As an event-driven trial, the study will continue until at least 631 primary outcome events have accrued, but the expected duration of follow-up is 2-4 years. Results: Of the 2,589 patients screened across 50 UK sites, 2,141 (83%) were randomized. At baseline, 65.3% were male, the median age was 65 years, and 79% were white. According to eligibility criteria, all patients were on ESA at screening. Prior stroke and MI were present in 8 and 9% of the cohort, respectively, and 44% of patients had diabetes at baseline. Baseline data for the randomized cohort were generally concordant with recent data from the UK Renal Registry. Conclusions: PIVOTAL will provide important information about the optimum dosing of IV iron in HD patients representative of usual clinical practice. Trial Registration: EudraCT number: 2013-002267-25.Peer reviewedFinal Published versio
150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model
The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits
Non-Critical Waveguide Alignment for Vertically-Coupled Microring using a Mode-Expanded Bus Architecture
Vertically coupled microrings in an all-pass filter configuration are fabricated with a range of waveguide misalignments deliberately introduced into the lithography masks to demonstrate noncritical fabrication requirements. The microrings have a mode-expanded bus design which allows a greatly reduced variation in power coupling coefficient-only 6% for fabrication misalignments as high as 1 µm. This represents a five-fold improvement in fabrication tolerance when compared with conventional designs
Ultracold Atoms in 1D Optical Lattices: Mean Field, Quantum Field, Computation, and Soliton Formation
In this work, we highlight the correspondence between two descriptions of a
system of ultracold bosons in a one-dimensional optical lattice potential: (1)
the discrete nonlinear Schr\"{o}dinger equation, a discrete mean-field theory,
and (2) the Bose-Hubbard Hamiltonian, a discrete quantum-field theory. The
former is recovered from the latter in the limit of a product of local coherent
states. Using a truncated form of these mean-field states as initial
conditions, we build quantum analogs to the dark soliton solutions of the
discrete nonlinear Schr\"{o}dinger equation and investigate their dynamical
properties in the Bose-Hubbard Hamiltonian. We also discuss specifics of the
numerical methods employed for both our mean-field and quantum calculations,
where in the latter case we use the time-evolving block decimation algorithm
due to Vidal.Comment: 14 pages, 2 figures; to appear in Journal of Mathematics and
Computers in Simulatio
The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction
We study the one-dimensional Bose-Hubbard model using the Density-Matrix
Renormalization Group (DMRG).For the cases of on-site interactions and
additional nearest-neighbor interactions the phase boundaries of the
Mott-insulators and charge density wave phases are determined. We find a direct
phase transition between the charge density wave phase and the superfluid
phase, and no supersolid or normal phases. In the presence of nearest-neighbor
interaction the charge density wave phase is completely surrounded by a region
in which the effective interactions in the superfluid phase are repulsive. It
is known from Luttinger liquid theory that a single impurity causes the system
to be insulating if the effective interactions are repulsive, and that an even
bigger region of the superfluid phase is driven into a Bose-glass phase by any
finite quenched disorder. We determine the boundaries of both regions in the
phase diagram. The ac-conductivity in the superfluid phase in the attractive
and the repulsive region is calculated, and a big superfluid stiffness is found
in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure
Superconductors with Magnetic Impurities: Instantons and Sub-gap States
When subject to a weak magnetic impurity potential, the order parameter and
quasi-particle energy gap of a bulk singlet superconductor are suppressed.
According to the conventional mean-field theory of Abrikosov and Gor'kov, the
integrity of the energy gap is maintained up to a critical concentration of
magnetic impurities. In this paper, a field theoretic approach is developed to
critically analyze the validity of the mean field theory. Using the
supersymmetry technique we find a spatially homogeneous saddle-point that
reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions
to the density of states that render the quasi-particle energy gap soft at any
non-zero magnetic impurity concentration. The sub-gap states are associated
with supersymmetry broken field configurations of the action. An analysis of
fluctuations around these configurations shows how the underlying supersymmetry
of the action is restored by zero modes. An estimate of the density of states
is given for all dimensionalities. To illustrate the universality of the
present scheme we apply the same method to study `gap fluctuations' in a normal
quantum dot coupled to a superconducting terminal. Using the same instanton
approach, we recover the universal result recently proposed by Vavilov et al.
Finally, we emphasize the universality of the present scheme for the
description of gap fluctuations in d-dimensional superconducting/normal
structures.Comment: 18 pages, 9 eps figure
- …