75,425 research outputs found

    Comment on ``Stripes and the t-J Model''

    Full text link
    This is a comment being submitted to Physical Review Letters on a recent letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte

    Comment on ``Density-matrix renormalization-group method for excited states''

    Full text link
    In a Physical Review B paper Chandross and Hicks claim that an analysis of the density-density correlation function in the dimerised Hubbard model of polyacetylene indicates that the optical exciton is bound, and that a previous study by Boman and Bursill that concluded otherwise was incorrect due to numerical innacuracy. We show that the method used in our original paper was numerically sound and well established in the literature. We also show that, when the scaling with lattice size is analysed, the interpretation of the density-density correlation function adopted by Chandross and Hicks in fact implies that the optical exciton is unbound.Comment: RevTeX, 10 pages, 4 eps figures fixed and included now in tex

    A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians

    Full text link
    A density-matrix renormalization group (DMRG) method for highly anisotropic two-dimensional systems is presented. The method consists in applying the usual DMRG in two steps. In the first step, a pure one dimensional calculation along the longitudinal direction is made in order to generate a low energy Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by coupling in the transverse direction the 1D Hamiltonians. The method is applied to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure

    A simplified PERT system

    Get PDF
    Modified PERT technique processes the input data and arranges it in familiar graphic form in a booklet which is issued at periodic intervals. The tabulated data provides readily available information to management personnel concerned with monitoring the progress of a program

    Electron scattering and transport in liquid argon

    Full text link
    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann's equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-section with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.Comment: 32 pages, 16 figures; minor corrections, added 1 figur

    Dilution jet mixing program, phase 3

    Get PDF
    The objectives of the program were: (1) to extend the data base on mixing of a single-sided row of jets with a confined crossflow, (2) to collect a data base on mixing of multiple rows of jets with confined crossflow, (3) to develop empirical jet mixing correlations, and (4) to perform limited three-dimensional calculations for some of these test configurations. The tests were performed with uniform mainstream conditions for several orifice plate configurations. Schematics of the test section and the orifice configurations are given. Temperature and pressure measurements were made in the test section at 4 axial and 11 transverse stations, using a 60-element rake probe. The measured temperature distributions for these tests are reported

    The η6\eta_6 at LEP and TRISTAN

    Full text link
    The η6\eta_6 is a ``heavy axion'' remnant of dynamical electroweak symmetry breaking by a color sextet quark condensate. Electroweak scale color instanton interactions allow it to be both very massive and yet be responsible for Strong CP conservation in the color triplet quark sector. It may have been seen at LEP via its two-photon decay mode and at TRISTAN via its hadronic decay modes.Comment: 11 pages, ANL-HEP-PR-93-4/BROWN-HET-87
    corecore