62,226 research outputs found

    Topological Change in Mean Convex Mean Curvature Flow

    Full text link
    Consider the mean curvature flow of an (n+1)-dimensional, compact, mean convex region in Euclidean space (or, if n<7, in a Riemannian manifold). We prove that elements of the m-th homotopy group of the complementary region can die only if there is a shrinking S^k x R^(n-k) singularity for some k less than or equal to m. We also prove that for each m from 1 to n, there is a nonempty open set of compact, mean convex regions K in R^(n+1) with smooth boundary for which the resulting mean curvature flow has a shrinking S^m x R^(n-m) singularity.Comment: 19 pages. This version includes a new section proving that certain kinds of mean curvature flow singularities persist under arbitrary small perturbations of the initial surface. Newest update (Oct 2013) fixes some bibliographic reference

    Linear Optical CNOT Gate in the Coincidence Basis

    Get PDF
    We describe the operation and tolerances of a non-deterministic, coincidence basis, quantum CNOT gate for photonic qubits. It is constructed solely from linear optical elements and requires only a two-photon source for its demonstration.Comment: Submitted to Physical Review

    Falicov-Kimball model and the problem of electronic ferroelectricity

    Full text link
    The density matrix renormalization group method is used to examine possibilities of electronic ferroelectricity in the spinless Falicov-Kimball model. The model is studied for a wide range of parameters including weak and strong interactions as well as the symmetric and unsymmetric case. In all examined cases the -expectation value vanishes for vanishing hybridization VV, indicating that the spinless Falicov-Kimball model does not allow for a ferroelectric ground state with a spontaneous polarization.Comment: 9 pages, 4 figures, LaTe

    Computation of Casimir Interactions between Arbitrary 3D Objects with Arbitrary Material Properties

    Full text link
    We extend a recently introduced method for computing Casimir forces between arbitrarily--shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett._103_ 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface--surface separation at which finite--size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters

    A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians

    Full text link
    A density-matrix renormalization group (DMRG) method for highly anisotropic two-dimensional systems is presented. The method consists in applying the usual DMRG in two steps. In the first step, a pure one dimensional calculation along the longitudinal direction is made in order to generate a low energy Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by coupling in the transverse direction the 1D Hamiltonians. The method is applied to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure
    corecore