66,925 research outputs found

    A simplified PERT system

    Get PDF
    Modified PERT technique processes the input data and arranges it in familiar graphic form in a booklet which is issued at periodic intervals. The tabulated data provides readily available information to management personnel concerned with monitoring the progress of a program

    Developing a Conceptual Framework of Seroadaptive Behaviors in HIV-Diagnosed Men Who Have Sex With Men

    Get PDF
    Background. Seroadaptive behaviors are strategies employed by men who have sex with men (MSM) to reduce the transmission risk for human immunodeficiency virus (HIV). It has been suggested that they contribute to the increasing diagnoses of sexually transmitted infections in HIV-diagnosed MSM. To understand the context in which the reemerging sexually transmitted infections appear, we developed a social epidemiological model incorporating the multiple factors influencing seroadaptive behaviors. Methods. A literature review of seroadaptive behaviors in HIV-diagnosed MSM was conducted. The literature was synthesized using a social epidemiological perspective. Results. Seroadaptive behaviors are adopted by MSM in high-income countries and are a way for HIV-diagnosed men to manage and enjoy their sexual lives. Influences are apparent at structural, community, interpersonal, and intrapersonal levels. There is little evidence of whether and when the behavior forms part of a premeditated strategy; it seems dependent on the social context and on time since HIV diagnosis. Social rules of HIV disclosure and perception of risk depend on the setting where partners are encountered. Conclusions. Seroadaptive behaviors are strongly context dependent and can reduce or increase transmission risk for different infectious diseases. Further data collection and mathematical modeling can help us explore the specific conditions in more detail

    Resolving the virial discrepancy in clusters of galaxies with modified Newtonian dynamics

    Full text link
    A sample of 197 X-ray emitting clusters of galaxies is considered in the context of Milgrom's modified Newtonian dynamics (MOND). It is shown that the gas mass, extrapolated via an assumed β\beta model to a fixed radius of 3 Mpc, is correlated with the gas temperature as predicted by MOND (MgT2M_g \propto T^2). The observed temperatures are generally consistent with the inferred mass of hot gas; no substantial quantity of additional unseen matter is required in the context of MOND. However, modified dynamics cannot resolve the strong lensing discrepancy in those clusters where this phenomenon occurs. The prediction is that additional baryonic matter may be detected in the central regions of rich clusters.Comment: Submitted to A&A, 4 pages, 3 figures, A&A macro

    Hole doped Hubbard ladders

    Full text link
    The formation of stripes in six-leg Hubbard ladders with cylindrical boundary conditions is investigated for two different hole dopings, where the amplitude of the hole density modulation is determined in the limits of vanishing DMRG truncation errors and infinitely long ladders. The results give strong evidence that stripes exist in the ground state of these systems for strong but not for weak Hubbard couplings. The doping dependence of these findings is analysed.Comment: 2 pages, 2 figures, submitted to SCES0

    Parallelization Strategies for Density Matrix Renormalization Group Algorithms on Shared-Memory Systems

    Full text link
    Shared-memory parallelization (SMP) strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein-Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.Comment: 18 pages, 9 figure

    Ultra-bright source of polarization-entangled photons

    Get PDF
    Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level of entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-σ\sigma violation of Bell's inequalities in less than three minutes.Comment: 4 pages, 5 encapsulated Postscript figures. To appear in Physical Review A (Rapid Communication

    The Consumption of Reference Resources

    Get PDF
    Under the operational restriction of the U(1)-superselection rule, states that contain coherences between eigenstates of particle number constitute a resource. Such resources can be used to facilitate operations upon systems that otherwise cannot be performed. However, the process of doing this consumes reference resources. We show this explicitly for an example of a unitary operation that is forbidden by the U(1)-superselection rule.Comment: 4 pages 6x9 page format, 2 figure

    Wilson line approach to gravity in the high energy limit

    Full text link
    We examine the high energy (Regge) limit of gravitational scattering using a Wilson line approach previously used in the context of non-Abelian gauge theories. Our aim is to clarify the nature of the Reggeization of the graviton and the interplay between this Reggeization and the so-called eikonal phase which determines the spectrum of gravitational bound states. Furthermore, we discuss finite corrections to this picture. Our results are of relevance to various supergravity theories, and also help to clarify the relationship between gauge and gravity theories.Comment: 33 pages, 5 figure

    High-efficiency quantum interrogation measurements via the quantum Zeno effect

    Get PDF
    The phenomenon of quantum interrogation allows one to optically detect the presence of an absorbing object, without the measuring light interacting with it. In an application of the quantum Zeno effect, the object inhibits the otherwise coherent evolution of the light, such that the probability that an interrogating photon is absorbed can in principle be arbitrarily small. We have implemented this technique, demonstrating efficiencies exceeding the 50% theoretical-maximum of the original ``interaction-free'' measurement proposal. We have also predicted and experimentally verified a previously unsuspected dependence on loss; efficiencies of up to 73% were observed and the feasibility of efficiencies up to 85% was demonstrated.Comment: 4 pages, 3 postscript figures. To appear in Phys. Rev. Lett; submitted June 11, 199
    corecore