71,864 research outputs found
A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases
Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have
been performed for a wide range of temperatures and pressures at a wavelength
of 403 nm and at a 90 degrees scattering angle. Measurements of the
Rayleigh-Brillouin spectral scattering profile were conducted at high
signal-to-noise ratio for all three species, yielding high-quality spectra
unambiguously showing the small differences between scattering in air, and its
constituents N2 and O2. Comparison of the experimental spectra with
calculations using the Tenti S6 model, developed in 1970s based on linearized
kinetic equations for molecular gases, demonstrates that this model is valid to
high accuracy. After previous measurements performed at 366 nm, the Tenti S6
model is here verified for a second wavelength of 403 nm. Values for the bulk
viscosity for the gases are derived by optimizing the model to the
measurements. It is verified that the bulk viscosity parameters obtained from
previous experiments at 366 nm, are valid for wavelengths of 403 nm. Also for
air, which is treated as a single-component gas with effective gas transport
coefficients, the Tenti S6 treatment is validated for 403 nm as for the
previously used wavelength of 366 nm, yielding an accurate model description of
the scattering profiles for a range of temperatures and pressures, including
those of relevance for atmospheric studies. It is concluded that the Tenti S6
model, further verified in the present study, is applicable to LIDAR
applications for exploring the wind velocity and the temperature profile
distributions of the Earth's atmosphere. Based on the present findings,
predictions can be made on the spectral profiles for a typical LIDAR
backscatter geometry, which deviate by some 7 percent from purely Gaussian
profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in
the Earth's atmosphere
Effect of the W-term for a t-U-W Hubbard ladder
Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately
balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing
is unclear and models with additional interaction terms have been studied. In
one of these, the square of a local hopping kinetic energy H_W was found to
favor pairing. However, such a term can be separated into a number of simpler
processes and one would like to know which of these terms are responsible for
enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard
ladder
The Supreme Court As Risk Manager: An Analysis of Skinner
Examining a recent case in which the U.S. Supreme Court approved the collection of blood and urine samples from railroad employees, the authors conclude that, in attempting to improve railroad safety, both majority and minority opinions reflected undue emphasis on technical issues and inadequate attention to the intangible social values underlying traditional Constitutional rights to privacy
The COBE Normalization for Standard CDM
The COBE detection of CMB anisotropies provides the best way of fixing the
amplitude of fluctuations on the largest scales. This normalization is usually
given for an n=1 spectrum, including only the anisotropy caused by the Sachs-
Wolfe effect. This is certainly not a good approximation for a model containing
any reasonable amount of baryonic matter. In fact, even tilted S-W spectra are
not a good fit to models like CDM. Here we normalize standard CDM (sCDM) to the
2-year COBE data, and quote the best amplitude in terms of the conventionally
used measures of power. We also give normalizations for some specific variants
of this standard model, and we indicate how the normalization depends on the
assumed values of n, Omega_B and H_0. For sCDM we find =19.9\pm1.5uK,
corresponding to sigma_8=1.34\pm0.10, with the normalization at large scales
being B=(8.16\pm1.04)\times10^5 (Mpc/h)^4, and other numbers given in the
Table. The measured rms temperature fluctuation smoothed on 10deg is a little
low relative to this normalization. This is mainly due to the low quadrupole in
the data: when the quadrupole is removed, the measured value of sigma(10) is
quite consistent with the best-fitting . The use of should be preferred
over sigma(10), when its value can be determined for a particular theory, since
it makes full use of the data.Comment: 4 pages compressed uuencoded postscript. We have corrected an error
in our analysi
Diffusion and phase change characterization by mass spectrometry
The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites
A New Source of Reaction - Diffusion Coupling in Confined Systems due to Temperature Inhomogeneity
Diffusion is often accompanied by a reaction or sorption which can induce
temperature inhomogeneities. Monte Carlo simulations of Lennard-Jones atoms in
zeolite NaCaA are reported with a hot zone presumed to be created by a
reaction. Our simulations show that localised hot regions can alter both the
kinetic and transport properties. Further, enhancement of the diffusion
constant is greater for larger barrier height, a surprising result of
considerable significance to many chemical and biological processes. We find an
unanticipated coupling between reaction and diffusion due to the presence of
hot zone in addition to that which normally exists via concentration.Comment: to be published in Phys. Rev. Let
Microplankton species assemblages at the Scripps Pier from March to November 1983 during the 1982-1984 El Nino event
A semiweekly sampling program at the Scripps Institution of Oceanography pier was begun in 1983 during an El Nino event. Microplankton data for March to November 1983 show a temporal sequence of species assemblages of the 24 important taxa, with a residence time of 1 to 4 weeks. From March to early September, the assemblages consisted of typical neritic taxa. From mid-September to mid-November, the presence of oceanic warm-wave species was associated with positive temperature anomalies characteristic of the El Nino condition. During the period studied numerical abundances were low
Is Cosmology Solved?
We have fossil evidence from the thermal background radiation that our
universe expanded from a considerably hotter denser state. We have a well
defined and testable description of the expansion, the relativistic
Friedmann-Lemaitre model. Its observational successes are impressive but I
think hardly enough for a convincing scientific case. The lists of
observational constraints and free hypotheses within the model have similar
lengths. The scorecard on the search for concordant measures of the mass
density parameter and the cosmological constant shows that the high density
Einstein-de Sitter model is challenged, but that we cannot choose between low
density models with and without a cosmological constant. That is, the
relativistic model is not strongly overconstrained, the usual test of a mature
theory. Work in progress will greatly improve the situation and may at last
yield a compelling test. If so, and the relativistic model survives, it will
close one line of research in cosmology: we will know the outlines of what
happened as our universe expanded and cooled from high density. It will not end
research: some of us will occupy ourselves with the details of how galaxies and
other large-scale structures came to be the way they are, others with the issue
of what our universe was doing before it was expanding. The former is being
driven by rapid observational advances. The latter is being driven mainly by
theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the
proceedings of the Smithsonian debate, Is Cosmology Solved
- …