632 research outputs found

    t-channel Approach to Reggeon Interactions in QCD

    Get PDF
    Starting from the multi-Regge effective action for high-energy scattering in QCD a tt-channel approach can be developed which is similar to the approach by White based on general Regge arguments. The BFKL kernel of reggeized gluon interaction, contributions to the 2→42 \rightarrow 4 reggeized gluon vertex function and the one-loop correction to the BFKL kernel are considered. The conditions are discussed under which this approach can provide a simple estimante of the next-to-leading logarithmic corrections to the BFKL perturbative pomeron intercept.Comment: latex , 17 figures appended as compressed uuencoded eps file

    Chirality Violation in QCD Reggeon Interactions

    Full text link
    The appearance of the triangle graph infra-red axial anomaly in reduced quark loops contributing to QCD triple-regge interactions is studied. In a dispersion relation formalism, the anomaly can only be present in the contributions of unphysical triple discontinuities. In this paper an asymptotic discontinuity analysis is applied to high-order feynman diagrams to show that the anomaly does indeed occur in sufficiently high-order reggeized gluon interactions. The reggeon states involved must contain reggeized gluon combinations with the quantum numbers of the anomaly (winding-number) current. A direct connection with the well-known U(1) problem is thus established. Closely related diagrams that contribute to the pion/pomeron and triple pomeron couplings in color superconducting QCD are also discussed.Comment: 52 pages, 29 PS figures in the tex

    Years of RXTE Monitoring of Anomalous X-ray Pulsar 4U 0142+61: Long-Term Variability

    Get PDF
    We report on 10 years of monitoring of the 8.7-s Anomalous X-ray Pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 March until 2006 February: the RMS phase residual for a spin-down model which includes nu, nudot, and nuddot is 2.3%. We report a possible phase-coherent timing solution valid over a 10-yr span extending back to March 1996. A glitch may have occured between 1998 and 2000, but is not required by the existing timing data. The pulse profile has been evolving since 2000. In particular, the dip of emission between its two peaks got shallower between 2002 and 2006, as if the profile were evolving back to its pre-2000 morphology, following an earlier event, which possibly also included the glitch suggested by the timing data. These profile variations are seen in the 2-4 keV band but not in 6-8 keV. We also detect a slow increase in the pulsed flux between 2002 May and 2004 December, such that it has risen by 36+/-3% over 2.6 years in the 2-10 keV band. The pulsed flux variability and the narrow-band pulse profile changes present interesting challenges to aspects of the magnetar model.Comment: 28 pages, 8 figures, accepted by Ap

    Interchange and Infernal Fishbone Modes in Plasmas with Tangentially Injected Beams

    Get PDF
    New energetic particle mode instabilities of fishbone type are predicted. The considered instabilities are driven by the circulating energetic ions. They can arise in plasmas of tokamaks and spherical tori with weak magnetic shear in the wide core region and strong shear at the periphery, provided that the central safety factor is close to the ratio m/n, where m and n are the poloidal mode number and toroidal mode number, respectively. The instability with m = n = 1 has interchange-like spatial structure, whereas the structure of instabilities with m/n > 1 is similar to that of the infernal MHD mode (except for the region in vicinity of the local Alfvén resonance)

    Small x resummation in collinear factorisation

    Full text link
    The summation of the small x-corrections to hard-scattering QCD amplitudes by collinear factorisation method is reconsidered and the K-factor is derived in leading ln x approximation with a result differing from the corresponding expression by Catani and Hautmann (Nucl. Phys. B 427, 475, 1994). The significance of the difference is demonstrated in the examples of structure function F_L and of exclusive vector meson electroproduction. The formulation covers the channels of non-vanishing conformal spin n paving the way for new applications.Comment: 34 pages, 6 figure

    Next-to-leading BFKL phenomenology of forward-jet cross sections at HERA

    Full text link
    We show that the forward-jet measurements performed at HERA allow for a detailed study of corrections due to next-to-leading logarithms (NLL) in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach. While the description of the d\sigma/dx data shows small sensitivity to NLL-BFKL corrections, these can be tested by the triple differential cross section d\sigma/dxdk_T^2dQ^2 recently measured. These data can be successfully described using a renormalization-group improved NLL kernel while the standard next-to-leading-order QCD or leading-logarithm BFKL approaches fail to describe the same data in the whole kinematic range. We present a detailed analysis of the NLL scheme and renormalization-scale dependences and also discuss the photon impact factors.Comment: 15 pages, 9 figures, new title, NLL-BFKL saddle-point approximation replaced by exact integratio

    UHECR Acceleration in Dark Matter Filaments of Cosmological Structure Formation

    Full text link
    A mechanism for proton acceleration to ~10^21eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by the ExB drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p_perp^2/B. Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this 'betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax=eBRcp_{max}=eBR for an accelerator with magnetic field BB and the orbit radius RR (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. The mechanism requires pre-acceleration that is likely to occur in structure formation shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators to a firm upper limit ~10^19.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy 10^21 eV. A requirement on accelerator to reach a given E_max placed by the accelerator energy dissipation \propto E_{max}^{2}/Z_0 due to the finite vacuum impedance Z_0 is circumvented by the cyclic operation of the accelerator.Comment: 34 pages, 10 figures, to be published in JCA

    Spatio temporal influence of isoflavonoids on bacterial diversity in the soybean rhizosphere

    Get PDF
    High bacterial density and diversity near plant roots has been attributed to rhizodeposit compounds that serve as both energy sources and signal molecules. However, it is unclear if and how specific rhizodeposit compounds influence bacterial diversity. We silenced the biosynthesis of isoflavonoids, a major component of soybean rhizodeposits, using RNA interference in hairy-root composite plants, and examined changes in rhizosphere bacteriome diversity. We used successive sonication to isolate soil fractions from different rhizosphere zones at two different time points and analyzed denaturing gradient gel electrophoresis profiles of 16S ribosomal RNA gene amplicons. Extensive diversity analysis of the resulting spatio temporal profiles of soybean bacterial communities indicated that, indeed, isoflavonoids significantly influenced soybean rhizosphere bacterial diversity. Our results also suggested a temporal gradient effect of rhizodeposit isoflavonoids on the rhizosphere. However, the hairy-root transformation process itself significantly altered rhizosphere bacterial diversity, necessitating appropriate additional controls. Gene silencing in hairy-root composite plants combined with successive sonication is a useful tool to determine the spatio temporal effect of specific rhizodeposit compounds on rhizosphere microbial communities.http://apsjournals.apsnet.org/loi/mpmi2016-01-31hb201
    • …
    corecore