2,507 research outputs found
Spin Gaps in a Frustrated Heisenberg model for CaVO
I report results of a density matrix renormalization group (DMRG) study of a
model for the two dimensional spin-gapped system CaVO. This study
represents the first time that DMRG has been used to study a two dimensional
system on large lattices, in this case as large as , allowing
extrapolation to the thermodynamic limit. I present a substantial improvement
to the DMRG algorithms which makes these calculations feasible.Comment: 10 pages, with 4 Postscript figure
Comment on "Kagome Lattice Antiferromagnet Stripped to Its Basics"
Density matrix renormalization group (DMRG) calculations on large systems (up
to 3096 spins) indicate that the ground state of the Heisenberg model on a
3-chain Kagome strip is spontaneously dimerized. This system has degenerate
ground states and a gap to triplet and singlet excitations. These results are
in direct contradiction with recent results of Azaria et al (Phys. Rev. Lett.
81, 1694 (1998)) and suggest a need for a reexamination of the underlying field
theory.Comment: 1 page, submitted to PR
Energetics of Domain Walls in the 2D t-J model
Using the density matrix renormalization group, we calculate the energy of a
domain wall in the 2D t-J model as a function of the linear hole density
\rho_\ell, as well as the interaction energy between walls, for J/t=0.35. Based
on these results, we conclude that the ground state always has domain walls for
dopings 0 < x < 0.3. For x < 0.125, the system has (1,0) domain walls with
\rho_\ell ~ 0.5, while for 0.125 < x < 0.17, the system has a possibly
phase-separated mixture of walls with \rho_\ell ~ 0.5 and \rho_\ell =1. For x >
0.17, there are only walls with \rho_\ell =1. For \rho_\ell = 1, diagonal (1,1)
domain walls have very nearly the same energy as (1,0) domain walls.Comment: Several minor changes. Four pages, four encapsulated figure
A novel boundary element method using surface conductive absorbers for full-wave analysis of 3-D nanophotonics
Fast surface integral equation (SIE) solvers seem to be ideal approaches for
simulating 3-D nanophotonic devices, as these devices generate fields both in
an interior channel and in the infinite exterior domain. However, many devices
of interest, such as optical couplers, have channels that can not be terminated
without generating reflections. Generating absorbers for these channels is a
new problem for SIE methods, as the methods were initially developed for
problems with finite surfaces. In this paper we show that the obvious approach
for eliminating reflections, making the channel mildly conductive outside the
domain of interest, is inaccurate. We describe a new method, in which the
absorber has a gradually increasing surface conductivity; such an absorber can
be easily incorporated in fast integral equation solvers. Numerical experiments
from a surface-conductivity modified FFT-accelerated PMCHW-based solver are
correlated with analytic results, demonstrating that this new method is orders
of magnitude more effective than a volume absorber, and that the smoothness of
the surface conductivity function determines the performance of the absorber.
In particular, we show that the magnitude of the transition reflection is
proportional to 1/L^(2d+2), where L is the absorber length and d is the order
of the differentiability of the surface conductivity function.Comment: 10 page
Ground State Properties of the Doped 3-Leg t-J Ladder
Results for a doped 3-leg t-J ladder obtained using the density matrix
renormalization group are reported. At low hole doping, the holes form a dilute
gas with a uniform density. The momentum occupation of the odd band shows a
sharp decrease at a large value of k_F similar to the behavior of a lightly
doped t-J chain, while the even modes appear gapped. The spin-spin correlations
decay as a power law consistent with the absence of a spin gap, but the pair
field correlations are negligible. At larger doping we find evidence for a spin
gap and as x increases further we find 3-hole diagonal domain walls. In this
regime there are pair field correlations and the internal pair orbital has
d_x^2-y^2 - like symmetry. However, the pair field correlations appear to fall
exponentially at large distances.Comment: 14 pages, 11 postscript figure
Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandecence and luminescence in arbitrary geometries
We describe a fluctuating volume--current formulation of electromagnetic
fluctuations that extends our recent work on heat exchange and Casimir
interactions between arbitrarily shaped homogeneous bodies [Phys. Rev. B. 88,
054305] to situations involving incandescence and luminescence problems,
including thermal radiation, heat transfer, Casimir forces, spontaneous
emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike
previous scattering formulations based on field and/or surface unknowns, our
work exploits powerful techniques from the volume--integral equation (VIE)
method, in which electromagnetic scattering is described in terms of
volumetric, current unknowns throughout the bodies. The resulting trace
formulas (boxed equations) involve products of well-studied VIE matrices and
describe power and momentum transfer between objects with spatially varying
material properties and fluctuation characteristics. We demonstrate that thanks
to the low-rank properties of the associatedmatrices, these formulas are
susceptible to fast-trace computations based on iterative methods, making
practical calculations tractable. We apply our techniques to study thermal
radiation, heat transfer, and fluorescence in complicated geometries, checking
our method against established techniques best suited for homogeneous bodies as
well as applying it to obtain predictions of radiation from complex bodies with
spatially varying permittivities and/or temperature profiles
Myeloid suppressor cell depletion augments antitumor activity in lung cancer.
BackgroundMyeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer.Principal findingsIndividual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNΞ³, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls.SignificanceOur data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion
Calculation of nonzero-temperature Casimir forces in the time domain
We show how to compute Casimir forces at nonzero temperatures with
time-domain electromagnetic simulations, for example using a finite-difference
time-domain (FDTD) method. Compared to our previous zero-temperature
time-domain method, only a small modification is required, but we explain that
some care is required to properly capture the zero-frequency contribution. We
validate the method against analytical and numerical frequency-domain
calculations, and show a surprising high-temperature disappearance of a
non-monotonic behavior previously demonstrated in a piston-like geometry.Comment: 5 pages, 2 figures, submitted to Physical Review A Rapid
Communicatio
TANF/Welfare Client Decline and Community Context in the Rural South, 1997-2000
This article examines the extent to which declines in welfare rolls relate to five major dimensions of community: (1) local demographic composition, (2) local labor market conditions, (3) local civic capacity, (4) local spatial characteristics, and (5) changes in local economic opportunities. Results based on data from the Mississippi Department of Human Services indicate that demographically, economically, and socially advantaged communities were more likely to experience high declines in welfare rolls. Rurality was associated with lower likelihood of high declines in welfare rolls across Mississippi counties. Clearly, a combination of a stronger local economy and social support in a local area increases the likelihood of larger decline in welfare rolls. The analysis presented in this article suggests that there is substantial local variation in the decline in welfare rolls that is associated with local economic and social conditions. The success of welfare reform policies clearly hinge on local conditions. What this analysis cannot reveal is the extent to which decline in welfare rolls is the result of recipients marrying, finding good jobs, or simply running up against time limits imposed by the welfare reform legislation
- β¦