15,709 research outputs found

    Sharp Fronts Due to Diffusion and Viscoelastic Relaxation in Polymers

    Get PDF
    A model for sharp fronts in glassy polymers is derived and analyzed. The major effect of a diffusing penetrant on the polymer entanglement network is taken to be the inducement of a differential viscoelastic stress. This couples diffusive and mechanical processes through a viscoelastic response where the strain depends upon the amount of penetrant present. Analytically, the major effect is to produce explicit delay terms via a relaxation parameter. This accounts for the fundamental difference between a polymer in its rubbery state and the polymer in its glassy state, namely the finite relaxation time in the glassy state due to slow response to changing conditions. Both numerical and analytical perturbation studies of a boundary value problem for a dry glass polymer exposed to a penetrant solvent are completed. Concentration profiles in good agreement with observations are obtained

    Spin-Tunnel Investigation of the Spinning Characteristics of Typical Single-Engine General Aviation Airplane Designs. 1. Low-Wing Model A: Effects of Tail Configurations

    Get PDF
    The effects of tail design on spin and recovery were investigated in a spin tunnel. A 1/11-scale model of a research airplane which represents a typical low-wing, single engine, light general aviation airplane was used. A tail design criterion for satisfactory spin recovery for light airplanes was evaluated. The effects of other geometric design features on the spin and recovery characteristics were also determined. Results indicate that the existing tail design criterion for light airplanes, which uses the tail damping power factor as a parameter, cannot be used to predict spin-recovery characteristics

    Spin-tunnel investigation of the spinning characteristics of typical single-engine general aviation airplane designs. 2: Low-wing model A; tail parachute diameter and canopy distance for emergency spin recovery

    Get PDF
    A spin tunnel study is reported on a scale model of a research airplane typical of low-wing, single-engine, light general aviation airplanes to determine the tail parachute diameter and canopy distance (riser length plus suspension-line length) required for energency spin recovery. Nine tail configurations were tested, resulting in a wide range of developed spin conditions, including steep spins and flat spins. The results indicate that the full-scale parachute diameter required for satisfactory recovery from the most critical conditions investigated is about 3.2 m and that the canopy distance, which was found to be critical for flat spins, should be between 4.6 and 6.1 m

    Flight research capabilities of the NASA/Army rotor systems research aircraft

    Get PDF
    A description is given of the capabilities and limitations of the Rotor Systems Research Aircraft (RSRA) that was demonstrated during the development contract, and assesses the expected research capabilities of the RSRA on delivery to the government

    Spin-tunnel investigation of a 1/13-scale model of the NASA AD-1 oblique-wing research aircraft

    Get PDF
    The spin and recovery characteristics of a 1/13-scale model of the NASA AD-1 oblique-wing research aircraft at wing-skew positions of 0, 25, 45, and 60 deg (right wing forward) were investigated. Spins were obtained for all wing-skew positions tested. For the unskewed wing position, two spin modes were possible. One spin mode was very steep and recoveries were obtained within 1 turn or less by rudder reversal. The second spin mode was flat and fast; the angle of attack was about 75 deg and the spin rate was about 145 deg/sec (2.5 seconds per turn). For the skewed wing positions, spins were obtained only in the direction of the forward-skewed wing (right wing forward). No spins were obtained to the left when the wing was skewed with the right wing forward. Recoveries should be attempted by deflecting the rudder to full against the spin, the ailerons to full with the spin, and movement of the wings to 0 deg skew. If the wing is skewed, the recovery may not be effected until the wing skew approaches 0 deg

    Shock Formation in a Multidimensional Viscoelastic Diffusive System

    Get PDF
    We examine a model for non-Fickian "sorption overshoot" behavior in diffusive polymer-penetrant systems. The equations of motion proposed by Cohen and White [SIAM J. Appl. Math., 51 (1991), pp. 472–483] are solved for two-dimensional problems using matched asymptotic expansions. The phenomenon of shock formation predicted by the model is examined and contrasted with similar behavior in classical reaction-diffusion systems. Mass uptake curves produced by the model are examined and shown to compare favorably with experimental observations

    A Two-dimensional Infinte System Density Matrix Renormalization Group Algorithm

    Full text link
    It has proved difficult to extend the density matrix renormalization group technique to large two-dimensional systems. In this Communication I present a novel approach where the calculation is done directly in two dimensions. This makes it possible to use an infinite system method, and for the first time the fixed point in two dimensions is studied. By analyzing several related blocking schemes I find that there exists an algorithm for which the local energy decreases monotonically as the system size increases, thereby showing the potential feasibility of this method.Comment: 5 pages, 6 figure
    • …
    corecore