870 research outputs found

    CBR Anisotropy from Primordial Gravitational Waves in Two-Component Inflationary Cosmology

    Full text link
    We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early universe. We consider spatially flat, perturbed FRW models that begin with an inflationary phase, followed by a mixed phase containing both radiation and dust. The scale factor during the mixed phase takes the form a(η)=c1η2+c2η+c3a(\eta)=c_1\eta^2+c_2\eta+c_3, where cic_i are constants. During the mixed phase the universe smoothly transforms from being radiation to dust dominated. We find analytic expressions for the graviton mode function during the mixed phase in terms of spheroidal wave functions. This mode function is used to find an analytic expression for the multipole moments ⟨al2⟩\langle a_l^2\rangle of the two-point angular correlation function C(γ)C(\gamma) for the CBR anisotropy. The analytic expression for the multipole moments is written in terms of two integrals, which are evaluated numerically. The results are compared to multipoles calculated for models that are {\it completely} dust dominated at last-scattering. We find that the multipoles ⟨al2⟩\langle a_l^2\rangle of the CBR temperature perturbations for l>10l>10 are significantly larger for a universe that contains both radiation and dust at last-scattering. We compare our results with recent, similar numerical work and find good agreement. The spheroidal wave functions may have applications to other problems of cosmological interest.Comment: 28 pgs + 6 postscript figures, RevTe

    The Primordial Gravitational Wave Background in String Cosmology

    Get PDF
    We find the spectrum P(w)dw of the gravitational wave background produced in the early universe in string theory. We work in the framework of String Driven Cosmology, whose scale factors are computed with the low-energy effective string equations as well as selfconsistent solutions of General Relativity with a gas of strings as source. The scale factor evolution is described by an early string driven inflationary stage with an instantaneous transition to a radiation dominated stage and successive matter dominated stage. This is an expanding string cosmology always running on positive proper cosmic time. A careful treatment of the scale factor evolution and involved transitions is made. A full prediction on the power spectrum of gravitational waves without any free-parameters is given. We study and show explicitly the effect of the dilaton field, characteristic to this kind of cosmologies. We compute the spectrum for the same evolution description with three differents approachs. Some features of gravitational wave spectra, as peaks and asymptotic behaviours, are found direct consequences of the dilaton involved and not only of the scale factor evolution. A comparative analysis of different treatments, solutions and compatibility with observational bounds or detection perspectives is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra

    Phase separation and stripe formation in the 2D t-J model: a comparison of numerical results

    Full text link
    We make a critical analysis of numerical results for and against phase separation and stripe formation in the t-J model. We argue that the frustrated phase separation mechanism for stripe formation requires phase separation at too high a doping for it to be consistent with existing numerical studies of the t-J model. We compare variational energies for various methods, and conclude that the most accurate calculations for large systems appear to be from the density matrix renormalization group. These calculations imply that the ground state of the doped t-J model is striped, not phase separated.Comment: This version includes a revised, more careful comparison of numerical results between DMRG and Green's function Monte Carlo. In particular, for the original posted version we were accidentally sent obsolete data by Hellberg and Manousakis; their new results, which are what were used in their Physical Review Letter, are more accurate because a better trial wavefunction was use

    Spatial Curvature Falsifies Eternal Inflation

    Full text link
    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10^-5). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature \Omega_k. On this basis we argue that a measurement of |\Omega_k| > 10^-4 would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of \Omega_k < -10^-4 (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of \Omega_k measurements and constitute a sharp test of these predictions.Comment: 16+2 pages, 2 figure

    Phase Separation Based on U(1) Slave-boson Functional Integral Approach to the t-J Model

    Full text link
    We investigate the phase diagram of phase separation for the hole-doped two dimensional system of antiferromagnetically correlated electrons based on the U(1) slave-boson functional integral approach to the t-J model. We show that the phase separation occurs for all values of J/t, that is, whether 0<J/t<10 < J/t < 1 or J/t≥1J/t \geq 1 with J, the Heisenberg coupling constant and t, the hopping strength. This is consistent with other numerical studies of hole-doped two dimensional antiferromagnets. The phase separation in the physically interesting J region, 0<J/t≲0.40 < J/t \lesssim 0.4 is examined by introducing hole-hole (holon-holon) repulsive interaction. We find from this study that with high repulsive interaction between holes the phase separation boundary tends to remain robust in this low JJ region, while in the high J region, J/t > 0.4, the phase separation boundary tends to disappear.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Pig farmers’ perceptions, attitudes, influences and management of information in the decision-making process for disease control

    Get PDF
    The objectives of this study were (1) to explore the factors involved in the decision-making process used by pig farmers for disease control and (2) to investigate pig farmers’ attitudes and perceptions about different information sources relating to disease control. In 2011 a qualitative study involving 20 face-to-face interviews with English pig farmers was conducted. The questionnaire was composed of three parts. The first part required farmers to identify two diseases they had experienced and which were difficult to recognize and/or control. They were asked to report how the disease problem was recognized, how the need for control was decided, and what affected the choice of control approach. For the latter, a structure related to the Theory of Planned Behaviour was used. Their verbal responses were classified as associated with: (1) attitude and beliefs, (2) subjective norms, or (3) perceived behavioural control (PBC). In the second part, five key sources of information for disease control (Defra, BPEX, research from academia, internet and veterinarians) and the factors related to barriers to knowledge were investigated. Interviews were recorded and transcribed. A qualitative analysis of the text of the interview transcripts was carried out using templates. Drivers for disease control were ‘pig mortality’, ‘feeling of entering in an economically critical situation’, ‘animal welfare’ and ‘feeling of despair’. Veterinarians were perceived by several participating farmers as the most trusted information source on disease control. However, in particular non-sustainable situations, other producers, and especially experiences from abroad, seemed to considerably influence the farmers’ decision-making. ‘Lack of knowledge’, ‘farm structure and management barriers’ and ‘economic constrains’ were identified in relation to PBC. Several negative themes, such as ‘lack of communication’, ‘not knowing where to look’, and ‘information bias’ were associated with research from academia. This study identified a range of factors influencing the decision-making process for disease control by pig farmers. In addition, it highlighted the lack of awareness and difficult access of producers to current scientific research outputs. The factors identified should be considered when developing communication strategies to disseminate research findings and advice for disease control

    High Magnetic Field ESR in the Haldane Spin Chains NENP and NINO

    Full text link
    We present electron spin resonance experiments in the one-dimensional antiferromagnetic S=1 spin chains NENP and NINO in pulsed magnetic fields up to 50T. The measured field dependence of the quantum energy gap for B||b is analyzed using the exact diagonalization method and the density matrix renormalization group method (DMRG). A staggered anisotropy term (-1)^i d(S_i^x S_i^z + S_i^z S_i^x) was considered for the first time in addition to a staggered field term (-1)^i S_i^x B_st. We show that the spin dynamics in high magnetic fields strongly depends on the orthorhombic anisotropy E.Comment: 4 pages, RevTeX, 4 figure

    Galactic cannibalism in the galaxy cluster C0337-2522 at z=0.59

    Full text link
    According to the galactic cannibalism model, cD galaxies are formed in the center of galaxy clusters by merging of massive galaxies and accretion of smaller stellar systems: however, observational examples of the initial phases of this process are lacking. We have identified a strong candidate for this early stage of cD galaxy formation: a group of five elliptical galaxies in the core of the X-ray cluster C0337-2522 at redshift z=0.59. With the aid of numerical simulations, in which the galaxies are represented by N-body systems, we study their dynamical evolution up to z=0; the cluster dark matter distribution is also described as a N-body system. We find that a multiple merging event in the considered group of galaxies will take place before z=0 and that the merger remnant preserves the Fundamental Plane and the Faber-Jackson relations, while its behavior with respect to the Mbh-sigma relation is quite sensitive to the details of black hole merging [abridged].Comment: 30 pages, 7 figures, MNRAS (accepted

    Spin-1 Antiferromagnetic Heisenberg Chains in an External Staggered Field

    Full text link
    We present in this paper a nonlinear sigma-model analysis of a spin-1 antiferromagnetic Heisenberg chain in an external commensurate staggered magnetic field. After rediscussing briefly and extending previous results for the staggered magnetization curve, the core of the paper is a novel calculation, at the tree level, of the Green functions of the model. We obtain precise results for the elementary excitation spectrum and in particular for the spin gaps in the transverse and longitudinal channels. It is shown that, while the spectral weight in the transverse channel is exhausted by a single magnon pole, in the longitudinal one, besides a magnon pole a two-magnon continuum appears as well whose weight is a stedily increasing function of the applied field, while the weight of the magnon decreases correspondingly. The balance between the two is governed by a sum rule that is derived and discussed. A detailed comparison with the present experimental and numerical (DMRG) status of the art as well as with previous analytical approaches is also made.Comment: 23 pages, 3 figures, LaTe

    Holons on a meandering stripe: quantum numbers

    Full text link
    We attempt to access the regime of strong coupling between charge carriers and transverse dynamics of an isolated conducting ``stripe'', such as those found in cuprate superconductors. A stripe is modeled as a partially doped domain wall in an antiferromagnet (AF), introduced in the context of two different models: the t-J model with strong Ising anisotropy, and the Hubbard model in the Hartree-Fock approximation. The domain walls with a given linear charge density are supported artificially by boundary conditions. In both models we find a regime of parameters where doped holes lose their spin and become holons (charge Q=1, spin S_z=0), which can move along the stripe without frustrating AF environment. One aspect in which the holons on the AF domain wall differ from those in an ordinary one-dimensional electron gas is their transverse degree of freedom: a mobile holon always resides on a transverse kink (or antikink) of the domain wall. This gives rise to two holon flavors and to a strong coupling between doped charges and transverse fluctuations of a stripe.Comment: Minor revisions: references update
    • …
    corecore