8,620 research outputs found

    Classification of subwatershed slopes and geotechnical characterization of steep slopes on reclaimed mine lands in East Tennessee

    Get PDF
    Mining and logging activity in the Appalachian region create both excessive runoff and sedimentation in local streams and rivers. Also, the Surface Mining Control and Reclamation Act of 1977 led to over compaction of mine spoil which has led to reclaimed mine lands which will not grow economically viable native hardwood forests. In recent years a construction technique known as low compaction grading has allowed for suitable tree growth but stability and sedimentation have not yet been explored. The purpose of this paper is to create a rapid assessment method to classify the characteristics of watersheds based upon their geomorphology, and then to match this process to the established Rapid Geomorphic Assessment (RGA) method; these methods are intended to correspond to the tendency for a given slope to produce sediment. Also, this research attempts to match upland disturbance areas common in East Tennessee to sediment production characteristics.Lastly, mine spoil physical characteristics were determined and used to determine slope stability on steep reclaimed mine slopes using the low compaction grading technique, and to determine the medium\u27s suitability for tree growth. No correlations were found between the developed Rapid Slope Assessment and the established RGA method. Sediment production characteristics were measured and compared for several land use disturbance areas common to East Tennessee and it was determined that logging roads were the most prone to high sediment production and then mining roads, logged areas, and mined areas followed in that order. Lastly, dry and wet unit weights, moisture contents, and grain size distributions were measured for reclaimed mine slopes using the low compaction grading method, and slope stability was assessed using an infinite slope analysis. It was determined that the nuclear density gauge was the most reliable and convenient way to measure unit weight.Furthermore the factor of safety against slope failure ranged from 1.9 to 1.4. These relatively low factors of safety are acceptable due to the low cost and consequence of slope failure on surface mine sites

    Identifying key belief-based targets for promoting regular physical activity among mothers and fathers with young children

    Get PDF
    We investigated the key beliefs to target in interventions aimed at increasing physical activity (PA) among mothers and fathers of young children. Parents (288 mothers and 292 fathers) completed a Theory of Planned Behaviour belief-based questionnaire and a 1-week follow-up of PA behaviour. We found that a range of behavioural, normative, and control beliefs were significantly correlated with parents’ PA intentions and behaviour, with only a few differences observed in correlations between PA beliefs and intention and behaviour by gender. A range of key beliefs was identified as making independent contributions to parents’ PA intentions; however, the behavioural beliefs about improving parenting practices (ÎČ = 0.13), interfering with other commitments (ÎČ = −0.29); normative beliefs about people I exercise with (ÎČ = 0.20); and control beliefs about lack of time (ÎČ = −0.24), inconvenience (ÎČ = −0.14), lack of motivation (ÎČ = −0.34), were revealed as significant independent predictors of actual PA behaviour. Furthermore, we found that a limited amount of parents already hold these beliefs, suggesting that these key beliefs warrant changing and, therefore, are appropriate targets for subsequent intervention. The current study fills an empirical gap in the PA literature by investigating an at-risk group and using a well established theoretical framework to identify key beliefs that guide parents’ PA decision-making. Overall, we found support for parents being a unique group who hold distinctive behavioural, normative, and control beliefs toward PA. Attention to these key underlying beliefs will assist intervention work aimed at combating inactivity among this at-risk population

    Scale-dependent bias and the halo model

    Full text link
    We use a simplified version of the halo model with a power law power spectrum to study scale dependence in galaxy bias at the very large scales relevant to baryon oscillations. In addition to providing a useful pedagogical explanation of the scale dependence of galaxy bias, the model provides an analytic tool for studying how changes in the Halo Occupation Distribution (HOD) impact the scale dependence of galaxy bias on scales between 10 and 1000 Mpc/h, which is useful for interpreting the results of complex N-body simulations. We find that changing the mean number of galaxies per halo of a given mass will change the scale dependence of the bias, but that changing the way the galaxies are distributed within the halo has a smaller effect on the scale dependence of bias at large scales. We use the model to explain the decay in amplitude of the baryon oscillations as k increases, and generalize the model to make predictions about scale dependent galaxy bias when redshift space distortions are introduced.Comment: 13 pages, 2 figures; corrected typos, extended discussion of redshift space distortions, matches published versio

    Constraining Anisotropic Baryon Oscillations

    Full text link
    We present an analysis of anisotropic baryon acoustic oscillations and elucidate how a mis-estimation of the cosmology, which leads to incorrect values of the angular diameter distance, d_A, and Hubble parameter, H, manifest themselves in changes to the monopole and quadrupole power spectrum of biased tracers of the density field. Previous work has focused on the monopole power spectrum, and shown that the isotropic "dilation" combination d_A^2/H is robustly constrained by an overall shift in the scale of the baryon feature. We extend this by demonstrating that the quadrupole power spectrum is sensitive to an anisotropic "warping" mode d_A H, allowing one to break the degeneracy between d_A and H. We describe a method for measuring this warping, explicitly marginalizing over the form of redshift space distortions. We verify this method on N-body simulations and estimate that d_A H can be measured with a fractional accuracy of ~ 3/sqrt(V) % where the survey volume is estimated in (Gpc/h)^3.Comment: 4 pages, 2 fig

    Measuring the galaxy power spectrum with future redshift surveys

    Get PDF
    Precision measurements of the galaxy power spectrum P(k) require a data analysis pipeline that is both fast enough to be computationally feasible and accurate enough to take full advantage of high-quality data. We present a rigorous discussion of different methods of power spectrum estimation, with emphasis on the traditional Fourier method, the linear (Karhunen-Loeve; KL), and quadratic data compression schemes, showing in what approximations they give the same result. To improve speed, we show how many of the advantages of KL data compression and power spectrum estimation may be achieved with a computationally faster quadratic method. To improve accuracy, we derive analytic expressions for handling the integral constraint, since it is crucial that finite volume effects are accurately corrected for on scales comparable to the depth of the survey. We also show that for the KL and quadratic techniques, multiple constraints can be included via simple matrix operations, thereby rendering the results less sensitive to galactic extinction and mis-estimates of the radial selection function. We present a data analysis pipeline that we argue does justice to the increases in both quality and quantity of data that upcoming redshift surveys will provide. It uses three analysis techniques in conjunction: a traditional Fourier approach on small scales, a pixelized quadratic matrix method on large scales and a pixelized KL eigenmode analysis to probe anisotropic effects such as redshift-space distortions.Comment: Major revisions for clarity. Matches accepted ApJ version. 23 pages, with 2 figs included. Color figure and links at http://www.sns.ias.edu/~max/galpower.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/galpower.html (faster from Europe) or from [email protected]

    Understanding the PSCz Galaxy Power Spectrum with N-body Simulations

    Full text link
    By comparing the PSCz galaxy power spectrum with the results of nested pure dark matter N-body simulations, we try to understand how infrared-selected galaxies populate dark-matter haloes, paying special attention to the method of halo identification in the simulations. We thus test the hypothesis that baryonic physics negligibly affects the distribution of galaxies down to the smallest scales yet observed. We are successful in reproducing the PSCz power spectrum on scales < ~40 h/Mpc, near our resolution limit, by imposing a central density cut-off on simulated haloes, which gives a rough minimum mass and circular velocity of haloes in which PSCz galaxies formed.Comment: 12 pages, 16 figures (one added), conforms to version in MNRA

    Sensitivity of a Bolometric Interferometer to the CMB power spectrum

    Full text link
    Context. The search for B-mode polarization fluctuations in the Cosmic Microwave Background is one of the main challenges of modern cosmology. The expected level of the B-mode signal is very low and therefore requires the development of highly sensitive instruments with low systematic errors. An appealing possibility is bolometric interferometry. Aims. We compare in this article the sensitivity on the CMB angular power spectrum achieved with direct imaging, heterodyne and bolometric interferometry. Methods. Using a simple power spectrum estimator, we calculate its variance leading to the counterpart for bolometric interferometry of the well known Knox formula for direct imaging. Results. We find that bolometric interferometry is less sensitive than direct imaging. However, as expected, it is finally more sensitive than heterodyne interferometry due to the low noise of the bolometers. It therefore appears as an alternative to direct imagers with different and possibly lower systematic errors, mainly due to the absence of an optical setup in front of the horns.Comment: 5 pages, 3 figures. This last version matches the published version (Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne Interferometers modified by a factor of tw
    • 

    corecore