515 research outputs found

    Behavior of copper‐containing high‐entropy alloys in harsh metal‐dusting environments

    Get PDF
    Metal dusting is still an unresolved issue at high temperatures. Currently, two material‐related strategies to mitigate metal dusting are described in the literature. On the one hand, highly alloyed materials are used, which contain large amounts of protective oxide‐forming elements, such as Cr, Al, and Si. The second mitigation strategy is based on inhibiting the catalytic effect of Fe, Ni, and Co. These elements all strongly catalyze the formation of solid carbon from the gas phase. Combining the catalytic protection of Cu alloying for metal dusting with protection by a classical alumina/chromia barrier is a native feature that high‐entropy alloys (HEAs) can offer. In this study, the behavior of different equiatomic HEAs with and without Al and/or Cu are studied when exposed at 620°C in a highly aggressive metal‐dusting environment

    Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    Get PDF
    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density \u3e99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced

    Accelerating Community College Graduation Rates: A Benefit–Cost Analysis

    Get PDF
    This article reports a benefit–cost evaluation of the Accelerated Study in Associate Programs (ASAP) of the City University of New York (CUNY). ASAP was designed to accelerate associate degree completion within 3 years of degree enrollment at CUNY’s community colleges. The program evaluation revealed that the completion rate for the examined cohort increased from 24.1% to 54.9%, and cost per graduate declined considerably (Levin & Garcia, 2012; Linderman & Kolenovic, 2012). The returns on investment to the taxpayer include the benefits from higher tax revenues and lower costs of spending on public health, criminal justice, and public assistance. For each dollar of investment in ASAP by taxpayers, the return was 3to3 to 4. For each additional graduate, the taxpayer gained an amount equal to a certificate of deposit with a value of 146,000(netofthecostsoftheinvestment).Basedontheseestimatedreturns,acohortof1,000studentsenrolledinASAPwouldgeneratenetfiscalbenefitsforthetaxpayerofmorethan146,000 (net of the costs of the investment). Based on these estimated returns, a cohort of 1,000 students enrolled in ASAP would generate net fiscal benefits for the taxpayer of more than 46 million relative to enrolling in the conventional degree program. ASAP results demonstrate that an effective educational policy can generate returns to the taxpayer that vastly exceed the public investment required

    Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions

    Get PDF
    Since the discovery of the C9orf72 repeat expansion as the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis, it has increasingly been associated with a wider spectrum of phenotypes, including other types of dementia, movement disorders, psychiatric symptoms and slowly progressive FTD. Prompt recognition of patients with C9orf72-associated diseases is essential in light of upcoming clinical trials. The striking clinical heterogeneity associated with C9orf72 repeat expansions remains largely unexplained. In contrast to other repeat expansion disorders, evidence for an effect of repeat length on phenotype is inconclusive. Patients with C9orf72-associated diseases typically have very long repeat expansions, containing hundreds to thousands of GGGGCC-repeats, but smaller expansions might also have clinical significance. The exact threshold at which repeat expansions lead to neurodegeneration is unknown, and discordant cut-offs between laboratories pose a challenge for genetic counselling. Accurate and large-scale measurement of repeat expansions has been severely hindered by technical difficulties in sizing long expansions and by variable repeat lengths across and within tissues. Novel long-read sequencing approaches have produced promising results and open up avenues to further investigate this enthralling repeat expansion, elucidating whether its length, purity, and methylation pattern might modulate clinical features of C9orf72-related diseases

    Using contractual incentives in district nursing in the English NHS: results from a qualitative study

    Get PDF
    © 2018 The author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Since 2008, health policy in England has been focusing increasingly on improving quality in healthcare services. To ensure quality improvements in community nursing, providers are required to meet several quality targets, including an incentive scheme known as Commissioning for Quality and Innovation (CQUIN). This paper reports on a study of how financial incentives are used in district nursing, an area of care which is particularly difficult to measure and monitor

    Wakefield Generation in Hydrogen and Lithium Plasmas at FACET-II: Diagnostics and First Beam-Plasma Interaction Results

    Full text link
    Plasma Wakefield Acceleration (PWFA) provides ultrahigh acceleration gradients of 10s of GeV/m, providing a novel path towards efficient, compact, TeV-scale linear colliders and high brightness free electron lasers. Critical to the success of these applications is demonstrating simultaneously high gradient acceleration, high energy transfer efficiency, and preservation of emittance, charge, and energy spread. Experiments at the FACET-II National User Facility at SLAC National Accelerator Laboratory aim to achieve all of these milestones in a single stage plasma wakefield accelerator, providing a 10 GeV energy gain in a <1 m plasma with high energy transfer efficiency. Such a demonstration depends critically on diagnostics able to measure emittance with mm-mrad accuracy, energy spectra to determine both %-level energy spread and broadband energy gain and loss, incoming longitudinal phase space, and matching dynamics. This paper discusses the experimental setup at FACET-II, including the incoming beam parameters from the FACET-II linac, plasma sources, and diagnostics developed to meet this challenge. Initial progress on the generation of beam ionized wakes in meter-scale hydrogen gas is discussed, as well as commissioning of the plasma sources and diagnostics
    • 

    corecore