1,470 research outputs found

    Nanoscale Charge Balancing Mechanism in Alkali Substituted Calcium-Silicate-Hydrate Gels

    Full text link
    Alkali-activated materials and related alternative cementitious systems are sustainable material technologies that have the potential to substantially lower CO2_2 emissions associated with the construction industry. However, the impact of augmenting the chemical composition of the material on the main binder phase, calcium-silicate-hydrate gel, is far from understood, particularly since this binder phase is disordered at the nanoscale. Here, we reveal the presence of a charge balancing mechanism at the molecular level, which leads to stable structures when alkalis (i.e., Na or K) are incorporated into a calcium-silicate-hydrate gel, as modeled using crystalline 14{\AA} tobermorite. These alkali containing charge balanced structures possess superior mechanical properties compared to their charge unbalanced counterparts. Our results, which are based on first-principles simulations using density functional theory, include the impact of charge balancing on the optimized geometries of the new model phases, formation energies, local bonding environments, bulk moduli and diffusion barriers of the alkali atoms within the crystals

    Retardation in alkali-activated materials via zinc oxide: Mechanism and implications

    Get PDF
    For ordinary Portland cement (OPC), chemical admixtures and additives that manipulate its hydration and setting are widely available. However, for alkali-activated materials (AAMs) the number of such admixtures that effectively manipulate short-term properties is severely limited. This scarcity of robust admixtures is attributed to the differences in solution and surface chemistry between OPC and AAMs, where existing admixtures are either unstable in the alkaline solution or show mixed/limited efficacy. Here, we utilize zinc oxide, a known retarder for OPC hydration, and investigate its influence on the alkali-activation reaction. We find that ZnO is a robust retarder for alkali-activation of blast furnace slag but has no effect on metakaolin-based AAMs. Using isothermal calorimetry and in situ X-ray pair distribution function analysis, the mechanism of ZnO retardation in alkali-activated materials is uncovered, revealing that calcium plays a pivotal role. Finally, since there is an ongoing debate on the retardation mechanism of ZnO in Portland cements, the results obtained here are significant for developing a fundamental understanding of retarding admixtures in general. Please click Additional Files below to see the full abstract

    Anti-phase Signature of Flare Generated Transverse Loop Oscillation

    Get PDF
    Copyright © 2013 American Astronomical Society / IOP PublishingTransverse loop oscillations observed by the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory spacecraft are studied after an impulsive solar flare eruption on 2012 May 8. We have found that a transversely oscillating coronal loop seen in the 171 Å bandpass oscillates in anti-phase with respect to adjacent larger loops seen in the 193 Å and 211 Å bandpasses. These unusual oscillations are analyzed to investigate the excitation mechanism responsible for their initial inwardly directed anti-phase behavior. The transverse oscillations are analyzed by constructing space-time diagrams from cuts made parallel to the projected loop displacements. The displacement time oscillation profiles are background subtracted and fitted with a damped cosine curve that includes a linear change in the period with time. The local magnetic topology of the active region is modeled using potential field source surface extrapolation. It reveals that the loops are anchored in different topological regions with foot point locations identified on either side of the EUV flare peak emission source. In this context, the oscillation characteristics indicate that the excitation mechanism is closely linked to the local magnetic field topology and the reconnection generated wave dynamics in the active region rather than following an external flare blast wave. We discuss how observations such as these may serve to identify reconnection processes in similar quadrupolar active regions

    Density functional modeling of the binding energies between aluminosilicate oligomers and different metal cations

    Get PDF
    Interactions between negatively charged aluminosilicate species and positively charged metal cations are critical to many important engineering processes and applications, including sustainable cements and aluminosilicate glasses. In an effort to probe these interactions, here we have calculated the pair-wise interaction energies (i.e., binding energies) between aluminosilicate dimer/trimer and 17 different metal cations Mn+ (Mn+ = Li+, Na+, K+, Cu+, Cu2+, Co2+, Zn2+, Ni2+, Mg2+, Ca2+, Ti2+, Fe2+, Fe3+, Co3+, Cr3+, Ti4+ and Cr6+) using a density functional theory (DFT) approach. Analysis of the DFT-optimized structural representations for the clusters (dimer/trimer + Mn+) shows that their structural attributes (e.g., interatomic distances) are generally consistent with literature observations on aluminosilicate glasses. The DFT-derived binding energies are seen to vary considerably depending on the type of cations (i.e., charge and ionic radii) and aluminosilicate species (i.e., dimer or trimer). A survey of the literature reveals that the difference in the calculated binding energies between different Mn+ can be used to explain many literature observations associated with the impact of metal cations on materials properties (e.g., glass corrosion, mineral dissolution, and ionic transport). Analysis of all the DFT-derived binding energies reveals that the correlation between these energy values and the ionic potential and field strength of the metal cations are well captured by 2nd order polynomial functions (R2 values of 0.99–1.00 are achieved for regressions). Given that the ionic potential and field strength of a given metal cation can be readily estimated using well-tabulated ionic radii available in the literature, these simple polynomial functions would enable rapid estimation of the binding energies of a much wider range of cations with the aluminosilicate dimer/trimer, providing guidance on the design and optimization of sustainable cements and aluminosilicate glasses and their associated applications. Finally, the limitations associated with using these simple model systems to model complex interactions are also discussed

    Improved nuclear localization of DNA-binding polyamides

    Get PDF
    Regulation of endogenous genes by DNA-binding polyamides requires effective nuclear localization. Previous work employing confocal microscopy to study uptake of fluorophore-labeled polyamides has demonstrated the difficulty of predicting a priori the nuclear uptake of a given polyamide. The data suggest that dye identity influences uptake sufficiently such that a dye-conjugate cannot be used as a proxy for unlabeled analogs. Polyamides capable of nuclear localization unaided by fluorescent dyes are desirable due to size and other limitations of fluorophores. Recently, a polyamide-fluorescein conjugate targeted to the hypoxia response element (HRE) was found to inhibit vascular endothelial growth factor (VEGF) expression in cultured HeLa cells. The current study uses inhibition of VEGF expression as a biological read-out for effective nuclear localization of HRE-targeted polyamides. We synthesized a focused library of non-fluorescent, HRE-targeted polyamides in which the C-terminus ‘tail’ has been systematically varied. Members of this library bind the HRE with affinities comparable or superior to that of the fluorescein-labeled analog. Although most library members demonstrate modest or no biological activity, two non-fluorescent polyamides are reported with activity rivaling that of the previously reported fluorescein-labeled polyamide. We also show evidence that promoter occupancy by HIF-1, the transcription factor that binds the HRE, is inhibited by HRE-targeted polyamides
    • …
    corecore